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Abstract 

Since the market launch and the development of the power-to-gas (PtG) technology depends, 

among other things, on the profitability and thus mainly on the investment costs of the plant, potential 

cost reduction should be examined. The main components of the PtG process are still under devel-

opment and only a few pilot plants have been built. With a higher number of installed plants, a sig-

nificant cost reduction is expected for the PtG technology, as experienced also in the case of other 

technologies. This deliverable D7.5 focuses on the analysis of investment cost reduction for 

power-to-gas applications through experience curves and economies of scale.  

In general, the formal concept of experience curves describes the decline of real costs by a constant 

percentage (learning rate) for every cumulative doubling of its produced volume and therefore rep-

resents a relationship between the costs of a product and the experience, expressed in cumulative 

production of that product. Also the term economies of scale in this deliverable refers solely to 

the effect of real cost reductions through an increase of the production volume and not to 

cost reductions in consequence of an increase in size in form of upscaling (e.g. of nominal 

power).  

The reasons for cost reductions based on experience curves and economies of scale can be 

attributed among other things to the following factors:  

 fix cost degression (increased utilization of different sectors in the company e.g., administra-

tion, R&D, production, logistics, and distribution),  

 reduction of production time (efficiency of manpower is increased due to learning effects),  

 increase specialization (standardization, focus on core competence and one product family),  

 variation in the used resources (e.g., alternative and less expensive (raw-)materials, optimize 

employment of staff according to their qualifications),  

 improvement of existing production technologies,  

 and optimization of product design with respect to simplify the production process.  

The produced volume of power-to-gas plants and therefore the gained experience and economies 

of scale depend on the development of the future global demand for power-to-gas products which 

is subject to climate and policy measures (e.g., carbon taxes, the scope of government R&D, subsi-

dies, and market introduction programs) and economic factors (e.g., economic growth). 

While literature-based data on learning rates, investment costs, and future global demand for power-

to-gas products would principally allow a first estimation of future investment costs for power-to-gas 

applications, the available data does not fulfill our requirements because of the lack of feasibility in 

differentiating among different electrolysis or methanation technologies as well as differentiating be-

tween system and stack (electrolysis) or reactor (methanation) cost. To get a detailed view of tech-

nological learning, a component-based approach was developed with the model CoLLeCT — Com-

ponent Level Learning Curve Tool. This allows for comparisons of learning effects between 

different technologies, investigation of cost structure developments, and consideration of 

spillover effects from concurrent technology sectors. The potential for cost reductions through 

technological learning were investigated for electrolysis and methanation systems.  

For implementing the theory of learning curves, it would be crucial to estimate the global PtG de-

mand. Depending on the scenario, there would be a need to install about 6,500 to 14,200 GW 

electrolysis power capacities and about 3,400 to 7,100 GW SNG-output power capacities 

(Synthetic Natural Gas) to meet the demand in the year 2050. These values seem to be very 

high. However, it is important to remember that, in 2050, in a decarbonized energy system, not only 
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natural gas but also other fossil energy sources, such as oil and coal, must be substituted by renew-

able energy carriers. Since not all areas of the energy system can be electrified, green molecules 

(renewable SNG and hydrogen produced by PtG) would also play an important role in the future 

energy system. In order to cover this relative high demand and to produce the required quan-

tities (for example about 285,000 electrolyzer systems with an installed power of 50 MW would be 

required), a mass production would be absolutely necessary. However, this calls for a standard-

ized and mass production-ready design of the products (e.g., no individual installation planning or 

piping). The power-to-gas systems must be planned for the construction on the green field (with the 

interface power supply, gas connection for feed-in and possibly CO2 supply), to meet the require-

ments for mass-production. 

The costs are thereby stated as real costs (reference year 2017, €2017). This means that the infla-

tionary effects that are anticipated and will lead to rising nominal costs have not been considered. 

Additionally, no significant changes in technology, such as an implementation of additional func-

tions, control elements and safety devices or efficiency improvements, have been taken into account 

for calculating the future investment costs; only this approach – the assessment of the product ac-

cording to the current functional scope and characteristics – allows for the investigation of future 

costs based on the theoretical concept of experience curves and economies of scale. 

The alkaline electrolyzer (AEC) systems show lower potential for cost reductions when compared to 

proton exchange membrane electrolyzer (PEMEC) and solid oxide electrolyzer (SOEC). With invest-

ment costs for AEC estimated to reach about 440 €2017/kWel in 2050, the costs are expected to be 

significantly higher than that stated for PEMEC systems that are expected to be about 

290 €2017/kWel. Besides the lower overall learning rate of AEC, this can be explained by the substan-

tially higher starting value of cumulative productions, which means that significant learning effects 

have already occurred in the past. Additionally, the learning rate of PEMEC decreases rather fast 

with increasing production volumes in the beginning, whereas this effect reduces for higher cumula-

tive volumes. Conversely, the experience rate of the AEC is more harmonized over the entire period. 

The SOEC shows the highest cost reduction potential of all three investigated electrolysis 

technologies, with investment costs estimated to reach about 610 €2017/kWel in 2050. This fol-

lows from a rather high learning rate that was defined on the SOEC itself, based on relevant litera-

ture. Especially, for this technology, further investigations on cost structure and experience rates are 

necessary to allow reasonable estimations on future investment costs. 

The experience curves for catalytic and biological methanation systems show similar trends 

for cost reductions. The investment costs for biological methanation reach lower levels in the long 

term. This is mainly driven by the fact that the relative increase in cumulative produced volume has 

to be substantially higher when compared to the catalytic application to reach presumed technology 

production share levels. Additionally, biological methanation does not have the catalyst component 

unlike the catalytic methanation, which is expected to gain relatively low learning effects when com-

pared to other components in the reactor module. Despite this, investment costs for both tech-

nologies remain on a similar level throughout the investigated period and are expected to 

reach values of 280 €2017/kWSNG (catalytic) and 220 €2017/kWSNG (biological) in 2050 under the 

presumed conditions. 

However, it has to be pointed out that the development of the power-to-gas technology is subject to 

fundamental energy and climate policy decisions.  
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Executive Summary 

An ecologically sustainable energy supply, which is economically viable and socially acceptable, is 

highly valued in the European policy. The European energy supply must be transformed due to en-

ergetic, social, economic, and environmental/climatic factors. The use of green gases on the basis 

of renewable electrical energy (as hydrogen, synthetic methane, or alternative hydrocarbons from 

hydrogen) has numerous advantages, which can significantly improve this transition of the energy 

system. Simultaneously, these gases can solve major problems in the development of renewable 

energy sources including the long-term storage of fluctuating renewable electricity sources, alterna-

tive energy transport via existing gas infrastructure, reduction of greenhouse gas emissions, new 

renewable energy sources for mobility and industrial processes, and an increase in local production 

and use. Thus, sector coupling by power-to-gas is a fundamental cornerstone for the transformation 

process of the European energy systems, and hence also a significant economic parameter. 

Therefore, the decarbonization of the European energy system must be considered as an oppor-

tunity to get a decisive boost for European leadership in innovative energy technology, energy-re-

lated transport technology and services, and the application and implementation of mature and green 

gas-related technologies. 

It must be stated that the direct usage of electricity is often intended. However, there are restrictions 

and limits, which can be effectively negated by transitioning to gaseous green sources like power-

to-gas products, green hydrogen, and green synthetic natural gas (SNG). Although being character-

ized by a lower technological efficiency, the production of SNG allows for the unrestricted use of the 

existing natural gas infrastructure and offers a completely mature technology and market availability 

of all the system-relevant components – right from storage until to the final consumer. 

This Deliverable 7.5 “Report on experience curves and economies of scale” of the STORE&GO 

project focuses on the analysis of investment cost reduction for power-to-gas applications through 

experience curves, learning effects, and economies of scale. Since the market launch and the de-

velopment of the power-to-gas technology depends, among other things, on the profitability and thus 

mainly on the investment costs of the plant, potential cost reduction should be examined. The main 

components of the power-to-gas process are still under development and only a few pilot plants have 

been built. With a higher number of installed plants, a significant cost reduction is expected for the 

power-to-gas technology, as experienced also in the case of other technologies. 

Methodological focus of this deliverable and theory of technological learning 

In general, the formal concept of experience curves describes the decline of real costs by a con-

stant percentage (learning rate) for every cumulative doubling of its produced volume and therefore 

represents a relationship between the costs of a product and the experience, expressed in cumula-

tive production of that product. Also the term economies of scale in this deliverable refers solely 

to the effect of real cost reductions through an increase of the production volume and not to 

cost reductions in consequence of an increase in size in form of upscaling (e.g. of nominal power). 

The different literature on technological learning that is available for a wide range of different tech-

nology sectors is not harmonized in terms of the used terminology. Often, varying terms are used 

without further definition, delimitation, or explanation, which complicates a comparison of different 

sources. As the theory of technological learning covers a wide range of simultaneously occurring 

effects, which are often hard to distinguish, a clear definition of mechanisms considered for such an 

analysis is mandatory. 
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When comparing different literature on that topic, learning curves and experience curves are rarely 

distinguished and used synonymously without further definition. Therefore, these two terms are used 

synonymously within this work as well and both describe the reduction of production costs in relation 

to the increase of cumulative production volumes of a specific technology. These learning effects 

are measured by the learning rate and include all kind of cost reduction potentials. While most ex-

perience curves in this work are evaluated as specific values related to the rated performance of the 

product, general improvements in the performance of a technology (efficiency) or significant changes 

in the technology itself, such as the addition of value-adding functions, are not considered in the 

calculations; only this approach – the assessment of the product according to the current functional 

scope and characteristics – allows for the investigation of future costs based on the theoretical con-

cept of experience curves and economies of scale. 

The term economies of scale is used in literature for describing two different forms of cost reductions 

of a product. Economies of scale that directly affect the production process of a certain technology 

as a step from the unit, over batch, to series production, and therefore reduce unit costs, are con-

sidered as part of technological learning. Therefore, the economies of scale are included in the ex-

ecuted investigations on experience curves for power-to-gas applications. On the other hand, reduc-

tions for specific investment costs for individual power-to-gas plants as a result of the upscaling of 

nominal power, according to the reference value used in the experience curve analysis, have not 

been considered in this deliverable. These effects will be handled separately in the STORE&GO 

deliverable D7.7 under consideration of inputs from plant manufacturers and other project partners. 

Briefly summarized, the term economies of scale in this deliverable D7.5 refers solely to the effect 

of real cost reductions through an increase of the production volume and not to cost reductions in 

consequence of an increase in size in form of upscaling (e.g. of nominal power). 

The concept of learning curves demonstrates the benefit of early investment and policy interventions 

in emerging technologies. Learning curves are applied to deduce past cost reductions to future cu-

mulative production levels and offer an indication of the “learning investments”. These additional 

investments are necessary for the deployment of the entrant technology while learning effects cover 

the gap between the costs of the entrant and the incumbent technologies including all the effects 

that lead to a cost reduction. In addition to technological learning in the narrower sense (improve-

ments in technology), this also includes the learning of employees (faster execution of recurring as 

well as non-recurring work), economies of scale, and other effects. 

 

Figure 1-1: Development of entrant and incumbent technologies’ costs (Own representation based on [1]) 

Adapting the concept of learning curves of industrial production activities to innovation and techno-

logical development is a substantial step that involves consideration of the nature and factors of 
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innovation1. Therefore, it is essential to evaluate the potential and restrictions of learning curves as 

an analytical tool in energy technology and policy analysis2. 

The formal concept of learning curves describes the empirical finding that the cost of an industrially 

manufactured product decreases by a constant percentage for every cumulative doubling of its pro-

duced volume. This percentage is commonly referred to as the learning rate. Thus, learning curves 

represent the relationship between the following two quantities: the cost of a product and the expe-

rience expressed in the cumulative production of that product. 

The reasons for the cost reductions based on experience curves and economies of scale can 

be attributed among other things to the following factors: fix cost degression (increased utilization of 

different sectors in the company e.g., administration, R&D, production, logistics, and distribution), 

reduction of production time (efficiency of manpower is increased due to learning effects), increase 

specialization (standardization, focus on core competence and one product family), variation in the 

used resources (e.g., alternative and more inexpensive (raw-)materials, optimize employment of 

staff according to their qualifications), improvement of existing production technologies, and optimi-

zation of product design with respect to simplify the production process. The produced volume of 

power-to-gas plants and therefore the gained experience and economies of scale depend on the 

development of the future global demand for power-to-gas products which are subject to climate and 

policy measures (e.g., carbon taxes, the scope of government R&D, subsidies, and market introduc-

tion programs) and economic factors (e.g., economic growth). 

Literature review on learning rates 

The learning rate of the technology or component, which indicates a proportional reduction of the 

costs for each doubling of the cumulative capacity or production, is a crucial parameter for calculating 

the future investment costs. Since similar technologies share comparable learning rates, a literature 

review on learning rates for energy technologies and, especially, methanation and other comparable 

technologies was performed.  

The overall median for learning rates for developing energy technologies (wind, photovoltaic, fuel 

cells, electrolyzers, and carbon capture) is about 13%, however, with a wide range from 2% to 47%. 

The literature on methanation has shown no usable data on learning rates for most of the considered 

processes. There have been a few techno-economic analyses for the processes, but none of them 

considered experience behavior.  

Since no reliable data on learning rates for the power-to-gas technology itself or comparable tech-

nologies are available, a disaggregated approach, by using learning rates on a component level, is 

used for calculating the future investment cost of power-to-gas systems. Therefore, the calculation 

model CoLLeCT (Component Level Learning Curve Tool) was developed for this purpose. 

Current investment costs 

A crucial value for the calculation of future technology costs of power-to-gas systems is current costs, 

which serve as an input parameter and hence the starting point (initial value) for the calculations with 

the calculation model CoLLeCT. This analysis includes data gathered from relevant literature as well 

                                                
 
1 Jamasb, T., & Kohler, J. (2007). Learning Curves for Energy Technology: A Critical Assessment. 
https://doi.org/10.17863/CAM.5144 
2 Köhler, J., Grubb, M., Popp, D., Edenhofer, O. (2006). The Transition to Endogenous Technical Change in 
Climate-Economy Models: A Technical Overview to the Innovation Modeling Comparison Project. The Energy 
Journal, Endogenous Technological Change and the Economics of Atmospheric Stabilisation Special Issue. 
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as cost estimates and experience values based on the erected demo plants collected from 

STORE&GO project partners. 

The different characteristic parameters – specific investment costs, rated power, year of installation 

– of the analyzed data reveal significant variation. In order to make reliable statements regarding the 

costs, the individual data points were categorized. Therefore, the different technologies (e.g., 

PEMEC, AEC, and SOEC) were examined separately. Furthermore, the time of the installation was 

split into five sections (< 2015, 2015–2017, 2018–2020, 2030, and 2050), whereby the range from 

2015 to 2017 was defined as current costs. For these time periods, the range, median, and average 

value of specific investment costs and rated power were calculated, respectively. Additionally, sta-

tistical outliers were identified and no longer included in subsequent analyses. In order to minimize 

the influence of the plant size on the specific investment costs, the current costs were also calculated 

for a standardized 5 MW plant size on the basis of the scale factor method, where 0.7 was assumed 

for the exponent (scale factor). The results of the comprehensive review are summarized in the 

following table.  

According to current information, it can be stated that the current specific investment costs are about 

1,200 €/kW and 1,100 €/kW for a 5 MW PEMEC and AEC, respectively. Since SOEC is a rather new 

technology, which is under development, it is hard to get reliable sources for cost forecasts. Never-

theless, for further calculations, the initial value for SOEC is estimated at 2,500 €/kW for a 5 MW 

system. The specific investment costs for both catalytic and biological methanation plants with a 

rated power of 5 MW SNG-output are in the range of 600 €/kWSNG. For the carbon dioxide (CO2) 

capture technology, the current specific costs per ton of CO2, and not the specific investment costs 

were analyzed. Depending on the technology, the median costs vary between 15 and 230 €/tCO2. 

Table 1-1: Overview of current specific investment cost for electrolyzer and methanation systems as well as spe-
cific costs for CO2 

Power-to-gas demand potential 

For calculating the future investment costs of PtG plants, the development of the demand potential 

of power-to-gas products until 2050 and thus the installed amount (power) of the main components 

is essential. 

Technology 

(System) 

CURRENT spec. costs initial values (norm.) # of references 

range Median avg. costs norm. power 

Electrolysis €/kWel €/kWel €/kWel MWel  

 

PEMEC 960–2,100 1,690 1,200 

5 
15 

AEC 870–2,530 1,480 1,100 

SOEC 700–9,400 - 2,500 13 

Methanation €/kWSNG €/kWSNG €/kWel MWSNG  

 

catalytic 110–2,000 510 600 
5 

7 

biological 100–1,450 720 600 7 

CO2 Capture (biogenic) €/tCO2 €/tCO2 €/tCO2   

 

biogas upgrading 0–90 30 

- - 

2 

bioethanol 

fermentation 

0–25 15 4 

 direct air capture 80–480 230 7 



D7.5 Report on experience curves and economies of scale Page 11 of 131 

 

Therefore, in the first step, a literature review on the demand potential of PtG on different levels 

(national, European and global) was performed. The direct comparability of the PtG demand is not 

possible due to the different framework conditions of the analyzed studies. Nevertheless, in order to 

make rough statements regarding the development of the PtG demand potential, the studies are 

divided into groups (sector and region) and the PtG demand potential is defined as the electrical 

input power of the electrolyzer. Most of the analyzed studies are performed for Germany, and only 

a few studies focus on PtG-potential at a European or global level. The PtG demand in the power 

sector on national level (Germany, Spain, and Italy) is estimated to be in the middle of the two-digit 

GWel range. The literature for Germany, which considers the entire energy system (power, mobility, 

industry, and heat), estimates the PtG demand potential to be in the lower three-digit GWel range. At 

the European level, the demand for PtG in the industry as well as in mobility is expected to be in the 

middle three-digit GWel range. The demand potential for PtG for all sectors is estimated in a high 

three-digit GWel range. At a global level, which is the most important level for predicting cost reduc-

tions by learning curves, only one study and one calculation (SNG replaces the whole gas demand 

in 2050) are available. It is estimated that the PtG demand potential would rise up to a lower five-

digit GWel range. 

In the second step, STORE&GO scenarios for the PtG demand potential were developed at the 

European and global levels. 

 

Figure 1-2: STORE&GO Scenarios: Necessary installed power of electrolyzers and methanation units in the year 
2050 

In general, scenarios serve to identify possible development paths and describe an alternative future. 

The development of scenarios is influenced by many different variables, which are highly related to 

fundamental energy and climate policy decisions. Depending on the scenario (low 50%, moderate 

75% or high 90% renewable energy sources (RES)), there are about 6,500 to 14,200 GWel installed 

electrolysis power and about 3,400 to 7,100 GW SNG output power necessary to meet the global 

PtG demand in the year 2050. These values seem to be very high and regarding the amount of RES, 

the STORE&GO scenarios are much more ambitious, as for example the EU-Reference Scenarios 

2016 or the scenarios defined by the World Energy Council, as these mainly represent an update on 

the current policy or the trend to 2050. However, with these current circumstances, it will not be 

possible to reach an ecologically sustainable energy supply and the climate targets. Therefore, it is 

important to remember that, in 2050, in a decarbonized energy system, not only natural gas but also 

other fossil energy sources, such as oil and coal, must be substituted by renewable energy carriers. 

Since all areas of the energy system cannot be electrified, green molecules (renewable SNG and 

hydrogen produced by PtG) would also play an important role in the future energy system. For this 

reasons, the STORE&GO scenarios are more ambitious and defined with a comparatively high 

amount of renewable energy sources. In order to cover this relative high demand and to produce the 
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required quantities (for example about 285,000 electrolyzer systems with an installed power of 

50 MW would be required), a mass production would be absolutely necessary. However, this calls 

for a standardized and mass production-ready design of the products (e.g., no individual installation 

planning or piping). The power-to-gas systems must be planned for the construction on the green 

field (with the interface power supply, gas connection for feed-in and possibly CO2 supply), to meet 

the requirements for mass-production. 

CoLLeCT – A Component Level Learning Curve Tool 

The usage of the learning curve theory aims at allowing prospects of the development of future 

technology costs. However, this is hardly impossible for novel applications on a low technology read-

iness level (TRL). Since significant effects, which are describable through technological learning, 

can only be evaluated after a few magnitudes of produced units, the technology under investigation 

must have reached a certain degree of maturity to assess further the development of production 

costs. 

To get a more detailed view on technological learning, a component-based approach was developed. 

This allows a comparison of learning effects between different technologies, investigation on cost 

structure development on the stack/reactor and system level, and consideration of spillover-effects 

from concurrent technology sectors. Although, at first it seems a lot more extensive owing to an 

increase in the complexity and the number of learning technologies (components), respectively, it 

gives us additional and, in some cases, easier methods to evaluate certain cost reduction effects. 

This means that, on a component basis, factors that influence the production costs can be partly 

determined and described by simple scaling and innovation processes, like the following: 

1. Cost reductions from mass productions:  

By investigating learning rates at a component level, decreases in production costs that occur 

by upscaling of the manufacturing processes can be easily distinguished. 

2. Changing material costs:  

By breaking down an appliance to a number of contained components, the variety of materials 

used per component is usually more manageable than for the overall appliance. This could allow 

a more accurate estimation of the development of the future production costs for individual com-

ponents, by facilitating an investigation of the past as well as future changes in the costs for 

needed raw materials. 

3. Reductions in material usage:  

Minimization of the material’s variety through analysis at the component level also allows sepa-

rating and substantiating expected savings in the material’s use of cost-intensive parts. This 

especially applies to components that require expensive raw materials whose costs cannot be 

expected to decrease significantly. 

4. Improvements in manufacturing time:  

For time-intensive manufacturing processes, distinct cost savings can often be gained by short-

ening the processing time. Such improvements can be more precisely determined and evalu-

ated at the component level when compared to the whole appliance. This not only considers 

(automated) machine processing costs but also manual working time costs. 
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Figure 1-3: Schematic view of the functionality of "CoLLeCT" on "System Level" 

Application of the learning curve model to the power-to-gas process 

The calculation model CoLLeCT was applied to two main systems of the PtG process (electrolysis 

and methanation) in their most common configurations. In this context, two different electrolyzer cell 

stack designs, AEC and PEMEC, are investigated in detail. The details concerning SOEC stack and 

methanation reactors had to be minimized due to the lack of well-grounded data. 

For the determination and evaluation of the model parameters, the data gathered from an intense 

examination of comparable technologies and component usages in the existing literature was used. 

In this regard, the detailed analysis of AEC and PEMEC stacks together with the data gained from 

literature reviews allowed a comparison of the calculation model; additionally, studies using the con-

ventional approach of linear learning were examined to justify the component-based approach (see 

for example the calculated learning curve for alkaline electrolysis cell stack in Figure 1-4). 
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Figure 1-4: Calculated learning curve for alkaline electrolysis cell stack 

For analyzing the future investment costs of electrolysis and methanation, both systems were struc-

tured in four basic modules as follows: 

1. Electrolysis cell stack / methanation reactor 

2. Power electronics / electric installation (ICT) 

3. Gas conditioning 

4. Balance of plant. 

Since the first module includes the main technological parts of each system, their component struc-

ture is analyzed in detail, and reasonable estimations are conducted in terms of costs shares and 

learning rates. The other modules are treated as peripheral parts of the process. These are not 

unique to a single technology but used in different occurrences of the system (e.g., in all investigated 

electrolyzer modules) or even concurrent technology sectors. Therefore, spillover-effects on techno-

logical learning have been taken into account for these parts of the models. This includes conducting 

an analysis of past and future natural gas and industrial hydrogen treatment to consider learning 

effects that take place independent of the market development of PtG. 

Future investment costs for power-to-gas applications 

Unless otherwise mentioned, cost predictions for the PtG technology in this Deliverable are stated 

as real costs (reference year 2017, €2017). This means that the inflationary effects that are antici-

pated and will lead to rising nominal costs have not been considered. Additionally, no significant 

changes in technology, such as an implementation of additional functions, control elements and 

safety devices or efficiency improvements, have been taken into account for calculating the future 

investment costs. 

Based on the system definitions, future costs for PtG applications have been analyzed according to 

the evaluated demand potentials for renewable hydrogen and SNG. While common PtG systems, 

especially those investigated in STORE&GO, usually consist of both electrolysis and methanation 

systems, the two systems were evaluated separately to allow more elaborate investigations and 

reduce the number of combinations. 
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The subsequent Table 1-2 sums up the calculated results for all investigated technologies assuming 

a “moderate” market penetration for PtG based on the evaluated potentials. These results show 

significant cost reductions for electrolysis and methanation systems and undermine the decreasing 

learning rate caused by the applied calculation model. 

It must be noted that, unless otherwise mentioned, cost predictions for the PtG technology in this 

deliverable are stated as real costs (the reference year is 2017, €2017). Additionally, no significant 

change in technology, such as the implementation of additional functions, is taken into account for 

calculating the future investment costs. This leads to a decline in the future investment costs (real 

costs) due to learning curve effects. On the other hand, if additional functions are taken into account 

and/or the nominal costs (including inflation) are considered, then the costs would not necessarily 

decrease when compared to the reference year 2017, but can remain on the same level or even 

increase. 

Table 1-2: Summary of calculated cost reduction potential for 5 MWel electrolyzer and 5 MWSNG-output methanation 
systems for the years 2030 and 2050 as well as the corresponding learning rates  

The following graphs show the calculated learning curves for electrolysis and methanation systems 

in their individual specifications. To highlight the necessity of a detailed analysis of current invest-

ment costs on long-term forecasts, an additional uncertainty of ±15% was added to the initial value 

for each calculated experience curve range (light-colored areas). 

Technology  

(System) 

Calculated costs Calculated learning rates (avg.) 

initial 

(2017) 

2030 2050 initial 

(2017) 

2030 2050 

Electrolysis €/kWel % 

 

PEMEC 1,200 530 290 16,8 13,8 12,0 

AEC 1,100 760 440 13,1 12,3 11,0 

SOEC 2,500 1,090 610 15,6 12,4 11,2 

Methanation €/kWSNG % 

 

Catalytic 600 440 280 12,1 12,0 11,7 

Biological 600 360 220 12,3 12,1 11,7 
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Figure 1-5: Resulting learning curves for electrolysis systems with an uncertainty of ±15 % on initial CAPEX 
(light-colored areas) 

 

 

Figure 1-6: Resulting learning curves for methanation systems with an uncertainty of ±15 % on initial CAPEX 
(light-colored areas) 

As all evaluated costs for the whole investigation period representing real costs are referenced to 

the year 2017, inflationary effects that are highly expectable and will lead to rising nominal costs 

have not been considered. Additionally, there is no consideration of significant changes in the tech-

nologies themselves (e.g. increasing efficiencies) or improvements in the function or quality, which 

have no direct effect on the related output. Summing up the aforementioned effects, it has to be 

taken into account that this will potentially reduce the effects gained from technological learning or 

even result in increasing nominal costs in the long-term. 
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The evaluation of learning curves for novel and established technologies requires the analysis of an 

adequate amount of historical cost data. Therefore, the availability of this data is mandatory to allow 

reasonable predictions on future cost development. While the component-based approach of the 

CoLLeCT model tries to circumvent this limitation by comparing learning effects on similar sub-com-

ponents between independent technologies, the collection of base data is still unavoidable, even 

necessary in a more detailed view, especially in this early stage of model development. Neverthe-

less, the use of a component-based calculation model allows the incorporation of learning effects on 

a much lower level, where these can be determined more precisely and narrowed down to certain 

adaptions to the production process for single parts. This allows the use of experience values for 

process improvements or raw material costs reduction from unit to mass production, which becomes 

less obvious when considering a full technology view. 
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1 Introduction 

An ecologically sustainable energy supply, which is economically viable and socially acceptable, is 

highly valued in the European policy. The European energy supply must be transformed due to en-

ergetic, social, economic, and environmental/climatic factors. The use of green gases on the basis 

of renewable electrical energy, such as hydrogen, synthetic methane, or alternative hydrocarbons 

from hydrogen and a carbon source like CO2, has numerous advantages, which significantly improve 

this transition of the energy system. Simultaneously, these gases can solve the following major prob-

lems in the development of renewable energy sources - the long-term storage of fluctuating renew-

able electricity sources, alternative energy transport via existing gas infrastructure, reduction in 

greenhouse gas emissions, new renewable energy sources for mobility and industrial processes, 

and an increase in local production and use. Thus, sector coupling by PtG is a fundamental corner-

stone for the transformation process of the European energy systems and thus also a significant 

economic parameter. 

Central contributions of power-to-gas to the energy system 

 Storage and transport solution: Through the injection and storage of energy carriers produced from 
renewable electricity like hydrogen and/or synthetic methane produced from hydrogen into the existing 
natural gas infrastructure, seasonal fluctuations of renewable electricity generators can be balanced.3 
New power lines or a grid expansion can be substituted by shifting the energy transport from the electric 
power grid to the natural gas grid. The advantage of an energy transport via the existing natural gas 
infrastructure is the high energy density in the natural gas grid. A possible expansion of the natural gas 
network would lead to a much smaller topographical intervention in relation to an expansion of the 
electricity network, which would increase the population's acceptance and reduce real estate costs. 4  

 Infrastructure solution: In addition to power plants, the Central European gas infrastructure not only 
includes a high-quality transmission and distribution grid but also enormous capacities for gas storage 
in caverns and porous reservoirs. Thus, the integration of renewable gases such as hydrogen or SNG 
into the natural gas infrastructure also avoids enormous stranded investments into the existing energy 
infrastructure. The possibility of sectoral coupling of the electrical and gas grids via hydrogen production 
(with optional methanation) also allows the integration of biogas and thus an increased greening of the 
gas sector. In other words, the long-term use of the existing gas infrastructure will depend on the degree 
of integration of renewable gases. Thus, the overall climate and energy policies are also supported by 
the existing gas infrastructure, which can be furthermore used to secure the long-term use of these 
infrastructures. 

 Supply of all segments by renewable energy sources: Green hydrogen and therefrom produced 
renewable hydrocarbons, such as methane, can be used in all energy segments (e.g., process heat, 
mobility, space heating, and electrical energy), and thus provide decisive contributions for greening the 
European energy system. In addition to battery-based electric mobility, the use of green hydrogen or 
methane from PtG plants will significantly accelerate the transition to a sustainable transport system with 
low or no emissions. Hydrogen and hydrogen-based synthetic methane can be used in combustion 
engines and fuel cells, and they have a great potential for reducing primary energy input, emission of air 
pollutants (e.g. particulates and NOX), and greenhouse gas emissions. Beside its utilization for energy 
production, hydrogen as a renewable resource is also important for manufacturing industries in terms of 
material utilization. In the steel industry, for instance, hydrogen can be used as a reducing agent in pig 
iron production (hydrogen reduces iron ores by removing the containing oxygen) to aid a low carbon 
steel production. Instead of reformers using natural gas to produce hydrogen, it would be possible to 
shift to carbon-neutral hydrogen produced in electrolysis plants under certain conditions (in case there 
are no natural gas pipelines or only low amounts of hydrogen available at a certain location). 

                                                
 
3 Therefore, refer to R. Tichler, J. Lindorfer, C. Friedl, G. Reiter, H. Steinmüller (2014) FTI-Roadmap Power-
to-Gas für Österreich, Energieinstitut an der JKU Linz. Herausgeber: bmvit, Schriftenreihe 50/2014. 
4 Therefore, refer to G. Reiter J. Lindorfer (2013) Möglichkeiten der Integration von Power-to-Gas in das be-
stehende Energiesystem. In: Steinmüller, Hauer, Schneider (Hrsg.) Jahrbuch Energiewirtschaft 2013. NWV 
Verlag. 
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Therefore, endeavors toward the decarbonization of the European energy system must be consid-

ered as an opportunity to boost European leadership in innovative energy technology, energy-related 

transport technology and services, and in the application and implementation of mature, green gas-

related technologies. It has to be stated that the direct usage of electricity is often intended; however, 

there are restrictions and limitations that can be effectively negated by transitioning to gaseous green 

sources like PtG products (e.g. green hydrogen and green SNG). Although being characterized by 

a lower technological efficiency, the production of SNG allows for the unrestricted use of the existing 

natural gas infrastructure and offers a completely mature technology and market availability of all 

the system-relevant components - right from storage until to the final consumer. 

This deliverable D7.5 focuses on the analysis of investment cost reduction for power-to-gas applica-

tions through experience curves and economies of scale. Since the market launch and the develop-

ment of the power-to-gas (PtG) technology depends, among other things, on the profitability and 

thus mainly on the investment costs of the plant, potential cost reduction should be examined. The 

main components of the PtG process are still under development and only a few pilot plants have 

been built. With a higher number of installed plants, a significant cost reduction is expected for the 

PtG technology, as experienced also in the case of other technologies.  

The deliverable’s structure comprises a brief introduction that is followed by definition of the meth-

odological focus – learning curves, experience curves, and economies of scale. The next chapter 

represents the economic theory of the learning curve concept and its application to the evaluation of 

energy systems. The aim is to provide a theoretical basis for the assessment of learning effects for 

energy technologies, which subsequently will be used as a basis to deduce learning effects within 

the application of the PtG technology in the context of the project STORE&GO. In chapter four to 

six, the most essential parameters – learning rate, current investment costs, and demand potential 

of PtG products – are analyzed by comprehensive literature reviews. Concerning the demand po-

tential of PtG products, STORE&GO scenarios are developed. The results of chapter four to six 

serve as input parameters for the calculation model CoLLeCT, which is described in chapter seven. 

Next, the general approach of CoLLeCT is applied to the components of the PtG technology. Finally, 

the potential for cost reductions through technological learning is calculated. Additionally, sensitivity 

analyses and calculations of nominal costs were performed by considering inflation. Finally, some 

conclusions of the results are derived. 
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2 Methodological focus: Learning curves, experience curves, 

and economies of scale 

Different literature on technological learning that is available for a wide range of different technology 

sectors is not harmonized in terms of the used terminology. Often, varying terms are used without 

further definition, delimitation, or explanation, which complicates a comparison of different sources. 

As the theory of technological learning covers a wide range of simultaneously occurring effects, 

which are often hard to distinguish, a clear definition of mechanisms considered in such an analysis 

is mandatory. Therefore, this section defines the terminology and delimitations used within this de-

liverable. 

In general, the formal concept of experience curves describe the decline of real costs by a constant 

percentage (learning rate) for every cumulative doubling of its produced volume and therefore rep-

resents a relationship between the costs of a product and the experience, expressed in cumulative 

production of that product. Also the term economies of scale in this deliverable refers solely to the 

effect of real cost reductions through an increase of the production volume and not to cost 

reductions in consequence of an increase in size in form of upscaling (e.g. of nominal power). 

2.1 Distinction between learning curves and experience curves 

There is literature on technological learning that uses different terms for the development of technol-

ogy costs in relation to cumulative production volumes. In this context, most popular notations are 

“learning curve” and “experience curve.” For these terms, variable definitions can be found in the 

relevant literature. One such definition is stated below: 

“The experience curve is an idea developed by the Boston Consulting Group (BCG) in the mid-

1960s. Working with a leading manufacturer of semiconductors, the consultants noticed that the 

company's unit cost of manufacturing fell by about 25% for each doubling of the volume that it pro-

duced. This relationship they called the experience curve: the more experience a firm has in produc-

ing a particular product, the lower are its costs. Bruce Henderson, the founder of BCG, put it as 

follows: ‘Costs characteristically decline by 20–30% in real terms each time accumulated experience 

doubles. This means that when inflation is factored out, costs should always decline. The decline is 

fast if growth is fast and slow if growth is slow.’” [2]  

While a learning curve refers exclusively to the ratio of the cumulative application rate to the produc-

tion time, an experience curve refers to the ratio of the cumulative application rate to the cost of 

production. 

When comparing different literature on technological learning, learning curves and experience 

curves are rarely distinguished and used synonymously without further definition. Consequently, 

these two terms are also used synonymously in this deliverable and both describe the reduction in 

production costs in relation to the increase in cumulative production volumes of a specific technology. 

2.2 Learning effects 

Learning effects describe the sum of influencing factors that lead to a decline in production cost, and 

therefore technology costs, through technological learning. These learning effects are measured by 

the learning rate and include areas that offer scope for cost reduction. The reasons for the cost 

reductions based on experience curves and economies of scale can be attributed among other things 

to the following factors:  
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 fix cost degression (increased utilization of different sectors in the company e.g., administra-

tion, R&D, production, logistics, and distribution),  

 reduction of production time (efficiency of manpower is increased due to learning effects),  

 increase specialization (standardization, focus on core competence and one product family),  

 variation in the used resources (e.g., alternative and more inexpensive (raw-)materials, opti-

mize employment of staff according to their qualifications),  

 improvement of existing production technologies,  

 and optimization of product design with respect to simplify the production process.  

While most experience curves in this work are evaluated as specific values related to the rated per-

formance of the product, general improvements in the performance of a technology (efficiency) by 

increasing its TRL are not considered in the calculations. 

The produced volume of power-to-gas plants and therefore the gained experience and economies 

of scale depend on the development of the future global demand for power-to-gas products which 

are subject to climate and policy measures (e.g., carbon taxes, the scope of government R&D, sub-

sidies, and market introduction programs) and economic factors (e.g., economic growth). 

2.3 Economies of scale 

Economies of scale describe the effect of average cost reductions in production obtained through 

an increase in the volume, size, or scale of the produced output as the fixed costs are spread out 

over more output units [3]. According to the mechanisms discussed in this deliverable, two aspects 

of scaling are distinguished: 

1. An enforced deployment of not yet widely established technologies requires a significant in-

crease in individual units produced. Therefore, an upscaling of production is a set of multiple 

steps necessary to cover the entire product development from prototype over small series to 

mass production. Since this is at least partially coupled with an increase in cumulative pro-

duction volumes, it is not really possible to distinguish cost reductions achieved through pro-

duction scaling by an individual manufacturer from technological learning. Therefore, these 

effects are considered as part of the technological learning as investigated in this deliverable. 

2. Besides production costs of individual units and application components, the specific invest-

ment costs for overall plant implementations are also affected by the plant scale (e.g., hydro-

gen or SNG output) itself. An increase in the nominal plant capacity usually reduces specific 

investment costs due to various effects. These effects can either be caused by a decline in 

production costs of larger scale components, a decline in costs of single parts by an increase 

in the purchased units, or cost reductions through repetitive work.   

These effects are mostly independent of technological learning, and therefore not included 

in our analysis of future technology costs in the first step. For the detailed assessment of 

future PtG generation costs for specific plant configuration they are incorporated as individual 

scaling factors. 

The term economies of scale is used in literature to describe two different forms of cost reductions 

of a product. Economies of scale that directly affect the production process of a certain technology 

as a step from unit, over batch, to series production, and therefore reduce unit costs, are considered 

as part of technological learning. Therefore, economies of scale are included in the executed inves-

tigations on experience curves for PtG applications. Reductions of specific investment costs for in-

dividual PtG plants as a result of upscaling nominal power, according to the reference value used in 
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the experience curve analysis, have not been considered in this deliverable. These effects will be 

handled separately in deliverable D7.7 under consideration of inputs from plant manufacturers and 

other project partners. Briefly summarized, the term economies of scale in this deliverable D7.5 re-

fers solely to the effect of real cost reductions through an increase of the production volume 

and not to cost reductions in consequence of an increase in size in form of upscaling (e.g. of 

nominal power). 
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3 Theory of technical learning  

This chapter represents the economic theory of the learning curve concept and its application to the 

evaluation of energy systems. The aim is to provide a theoretical basis for the assessment of learning 

effects of energy technologies, which subsequently will be used as a basis to deduce learning effects 

within the purview of the application of the PtG technology in the context of the project STORE&GO.  

The transformation of the energy system to facilitate the intensive use of renewable energies is 

based on the assumption that the technology costs concerning the generation, applications, and 

storage of renewable energy will decrease in the future. These cost reductions will eventually de-

velop competitiveness between renewable energy and fossil energy sources. Developing an energy 

system with lower greenhouse gas emissions and higher resource efficiency requires the consider-

ation of learning curves. In current models of the energy system analysis, technological progress is 

no longer considered exogenously but needs to be integrated into the model in the form of learning 

curves and thus endogenized. 

The first approach of exogenous technological progress is based on Schumpeter’s invention-inno-

vation-diffusion paradigm [4], [5]. Based on this approach, invention implies the generation of new 

knowledge and ideas. Inventions are further developed and converted into new products, whereas 

diffusion covers the extensive implementation of new products. Further, Solow [6] qualified the inex-

plicable element of augmented productivity growth of the economy as technological progress. This 

technological change was mainly considered in the new macroeconomic endogenous growth litera-

ture and in the development of the learning curve concept in microeconomic analyses also including 

evaluations in the energy sector ([7], [8]). Later, the literature on economics, or energy and climate 

economics literature, focused on the topic of technical change. Particularly, the Stern Review of the 

economics of climate change [9] integrated assumptions regarding learning rates of technologies 

into its long-term cost projections. Learning rates are as important for technology analyses as dis-

count rates are for cost-benefit analyses.  

In the following chapters, the general concept of learning curves will be described, and its application 

for the analysis of energy systems and technologies will be presented. 

3.1 The learning curve concept 

There are several causes behind the phenomenon of learning and learning curves, whose effects 

have still not been fully investigated. The essential feature, however, is the acquisition of experience 

in the entire manufacturing process: the greater this experience, the greater the cumulative produc-

tion of a good and the lower will be the product costs; this is because the manufacturing process can 

be optimized, resources can be saved, and economies of scale can be used, among others. The 

essence of learning curves can be formulated as follows – a competitive environment enables indi-

viduals, companies, and industries to enhance their performance. This is an essential aspect of 

learning curves. The cost reduction is connected to the activity in the market – the actual production 

of the good as opposed to pure research and development. 

In the 1960s, the phenomenon of learning curves was scientifically examined by the Boston Con-

sulting Group [10], and the term experience curve was coined. Contrary to the concept of the learning 

curve, the experience curve approach does not relate to individual input costs, such as labor costs, 

but to the total cost of a production process. This means that all costs incurred until the product 

reaches the end user are included. It also includes research and development, distribution costs, 

marketing, and overheads. At the same time, potential influencing factors of a cost reduction are 

defined. These include economies of scale, technical progress, learning curve effects in the narrower 



D7.5 Report on experience curves and economies of scale Page 24 of 131 

 

sense (learning from executive and managerial posts in operational functions), and rationalization 

(more economical use of production factors such as a decline in raw material consumption). 

The concepts of learning and experience curves cannot be clearly separated because the experi-

ence curve concept has its origin in the learning curve. In the literature, these terms are sometimes 

even used interchangeably. The insights gained from the learning curve are directly incorporated 

into the experience curve. The learning curve refers to the experience gained in the manufacturing 

area, with the experience curve more likely to involve the whole company. The insights gained form 

the learning curve is used not only by manufacturing companies but also by service companies (e.g., 

banks and insurance companies). The main difference between learning effects and experience 

curves are the following: 

While a learning curve refers exclusively to the ratio of the cumulative application rate to the produc-

tion time, an experience curve refers to the ratio of the cumulative application rate to the cost of 

production. 

In conclusion, the derivation of the learning curve or experience curve yields a particular learning 

rate that displays the fractional reduction in the cost for each doubling of the cumulative capacity or 

production. Although often referred to as the “learning-by-doing” (LBD) rate, this learning rate pa-

rameter serves as a proxy for all aspects that contribute to observed changes in the cost [11]. 

In applying the simple form of the learning curve, the rate of progress remains constant over the 

entire learning curve. This means that young technologies can learn faster from market experience 

than old technologies at the same learning rate owing to the significant effect of the same absolute 

increase in cumulative production at the beginning of a product's lifecycle. For example, if a market 

expansion from 1 MW to 2 MW cumulative installed capacities of photovoltaic modules causes a 

cost reduction of 18%, an installed capacity of 100 MW would require the installation of another 

100 MW to achieve an additional 18% of cost reduction. 

The concept of learning curves demonstrates the benefit of early investment in and policy interven-

tions concerning emerging technologies. Learning curves are applied to deduce past cost reductions 

to ascertain future cumulative production levels and offer an indication of the “learning investments”. 

These additional investments are necessary for the deployment of the entrant technology, while 

learning effects cover the gap between the costs of the entrant and the incumbent technologies. 

The key feature of learning curves is that they include all the effects that lead to a cost reduction. In 

addition to technological learning in the narrower sense (improvements in technology), this also in-

cludes the learning of employees (faster execution of recurring as well as non-recurring work), econ-

omies of scale, and other effects. 

Furthermore, economies of scale should be considered. These indicate advantages of size/amount, 

which are expressed considering the fact that the cost per unit, that is, the costs incurred by the 

company for a product, decreases with an increase in production volume (and thus company size). 

Therefore, the economies of scale denote the cost advantages of mass production and provide a 

basis for the competitive strategy to attain cost leadership that is, striving to reduce the cost to the 

lowest level among all competitors. The economies of scale explain why many companies and cor-

porations are striving to increase their size, conquer new markets, or purchase other companies. 
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Figure 3-1 : Development of entrant and incumbent technologies’ costs (Own representation based on [1]) 

Learning effects and experience gains can lead to economies of scale effects as a company gains 

production efficiency and, above all, witnesses an increase in the number of units. Other causes of 

economies of scale include efficiency gains, which are created by specializing or automating pro-

duction, which gets profitable at a certain production volume. Additionally, marketing benefits can 

generate economies of scale effects. It must be noted that the cost of an advertising campaign (e.g., 

television commercials) are better distributed when the advertiser not only conducts business in 

some cities but is also represented nationwide (i.e., the cost per store or, as a result, the product 

sold, is lower). Likewise, large volumes increase the negotiating or purchasing power to the suppli-

ers, and thereby lower the purchase prices. Finally, fixed cost degression must be considered. The 

fixed or capacity costs (e.g., rent for the production facility, depreciation of machinery, and salaries) 

are allocated to a higher number of products to achieve a reduction in the fixed costs per unit. 

To distinguish pure scale effects from learning curve effects, it is important to clarify the different 

explanatory variables. Economies of scale refer to cost reductions per input with an increase in out-

put. The costs serve as a function of the output produced at a given time. Conversely, learning curve 

effects are based on the cumulative output. Therefore, learning curve effects can also occur without 

an increase in the production capacity [12]. 

3.2 Formal description of the learning curve concept 

As early as 1925, there were first observations of the decrease in assembly time of aircraft through 

the repetition of production operations at the Patterson Airforce Base in the US. The model of Wright 

[13] showed that doubling the cumulative production volume leads to a constant decrease in the 

required aircraft production hours.5 This laid the basis for the learning curve concept, which describes 

the relationship between the costs of individual input factors of an industrial process (e.g., the num-

ber of working hours and material costs) and the cumulative amount of the produced goods. 

The concept of learning curves describes the empirical finding that the cost of an industrially manu-

factured product decreases by a constant percentage for every cumulative doubling of its produced 

volume. This percentage is commonly referred to as the learning rate. Thus, the learning curves 

                                                
 
5 Learning curves in production processes were further investigated by Hirsh [176] in mechanical engineering 
and by Rapping [177] in aircraft construction during the Second World War. 
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represent the relationship between the following two quantities: the cost of a product and the expe-

rience expressed in cumulative production of that product. 

Product costs can be represented as the function of the cumulative production: 

 C = C0 ∗ ACC
−ε Eq. 1 

where C denotes the costs at a given time, ACC is the cumulative production at that time, C0 is the 

cost of one unit of cumulative production, and Ɛ is the (positive) learning parameter. 

 

Figure 3-2: Product costs serve the function of cumulative production 

A twice-logarithmic plot of the costs related to the cumulative production results in an even function 

with the gradient -Ɛ. If the cumulative production is doubled, then the costs would decrease to 2−ɛ 

of the original costs. This number, the so-called progress ratio (PR), is often used when comparing 

different learning curves. It is calculated according to  

 PR = 2−ε Eq. 2 

In addition, the aforementioned learning rate LR is used, which describes the cost reduction when 

the cumulative production or capacity is doubled: 

 𝐿𝑅 = 1 − 𝑃𝑅 = 1 − 2−𝜀 Eq. 3 

Adapting the concept of learning curves of industrial production activities to innovation and techno-

logical development is a substantial step that involves consideration of the nature and factors of 

innovation [8]. Consequently, it is essential to evaluate the potential and restrictions of learning 

curves as an analytical tool in energy, technology, and policy analysis [7]. 

3.2.1 The One Factor Learning Curve (OLFC) 

Following Wiesenthal et al. [1], the above explained concept of learning curves can be depicted in 

the energy policy framework as follows: 

 Ct,y = mQt,y
−∈ Eq. 4 

where C represents the unit costs of energy production (€/W), Q is the cumulative production (W), Ɛ 

is the elasticity of learning (learning index/rate), m is the normalization parameter with respect to 

initial conditions, t the technology, and y the period (year). This concept of the one factor learning 

curve (OFLC) benefits from relatively easily accessible data. Investment costs and production (or 
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installation) volumes are often well-documented when compared to other underlying cost drivers [1]. 

Hence, learning curves that are more consistent can be derived for economic modeling. 

As discussed in Wiesenthal et al. [1], for a number of technologies, the learning effect is less appar-

ent or even non-existing, such as gas pipelines [14], [15]. In other cases, the OFLC can be derived, 

but a low statistical significance may imply high annual fluctuations in costs. Moreover, a rise in the 

net cost can occur when, for example, the market tightness and commodity price increases counter-

weigh the cost-reducing technology learning effects [1]. Hence, a proposed development to the 

OFLC is to divide the accumulated cost into more of its core factors and analyze the parts inde-

pendently. This would not only put the focus on investment costs but also on the conversion effi-

ciency, maintenance costs, safety features, and reliability of factors of the demand side [1]. This 

approach can be formally explained by 

 C(x) = αC(x0) (
x

x0
)
−L

+ (1 − α)C(x0) Eq. 5 

where x represents the cumulative output, x0 denotes the cumulative output at t=0, C(x) is the cost 

at cumulative output, L denotes the learning parameter implying the learning rate LR = 1 - 2-L, and 

α represents the cost share of the learning component at t=0. 

By this multi-component learning analysis, Ferioli et al. [16] and van der Zwaan et al. [15] reveal that 

some cost components involve learning (e.g., the production process), while others do not (e.g., 

labor costs and material costs) involve learning. Additionally, the concept of multi-component learn-

ing analysis may produce diverse results regarding historical data and technology forecasts or en-

ergy scenarios. It must be noted that the overall costs that involve learning represent an accumula-

tion of the costs of the specific components of the technology. Every individual fraction can have a 

diverse learning index. Hence, it is possible to study the impact of learning on the components inde-

pendently. Nevertheless, data on particular production processes and costs may be non-existing or 

challenging to derive [1]. 

3.2.2 The Two Factor Learning Curve (TFLC) 

As explained in 3.2.1, the concept of the OFLC has its strengths in the aggregation of numerous 

essential factors of cost reduction in one factor; this finding corresponds to observations. On the 

other hand, individual drivers of cost reductions like research and learning-by-doing cannot be de-

tected, and hence the identification of the impacts of policies addressing R&D investments is partic-

ularly limited [1]. In this regard, the division of the OFLC into a Two Factor Learning Curve (TFLC) 

was realized by Kouvaritakis et al. [17], which is analogous to Wiesenthal et al. [1] and can be de-

picted formally as 

 Ct,y = mQt,y
−αKSt,y

−β
 Eq. 6 

where C represents the cost of unit production (€/W), Q stands for the cumulative production (W), 

KS denotes the knowledge stock which is approximated expressed through the sum of R&D invest-

ments (€), α is the elasticity of learning-by-doing, β is the elasticity of learning by researching, and 

m is the normalization parameter with respect to initial conditions. 

Rubin et al. [11] summarized empirical evaluations of the concept of TFLC and showed that R&D 

investments support cost reductions at all the stages of technological progress, and, in several 

cases, R&D’s contribution is more when compared to learning-by-doing (see also [18], [17], [19], 

[20], [21], [22]). Further analyses indicate the existence of correlations between R&D expenditures 

and subsequent cost reductions (see [19], [20], [21], [22]). On the other hand, although the investi-

gations of Miketa and Schrattengolzer [23] support the general feasibility of this concept, it is also 
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shown that this does not improve the accuracy of the representation of the cost reductions. Finally, 

it must be noted that research on the TFLC often limits consideration to public R&D expenditures 

because data on private R&D spending are usually not accessible or adequately disaggregated [1]. 

3.3 Qualitative representation of the learning system 

In most of the literature on the learning curve for energy technologies, the focus is on the develop-

ment of a simple model that achieves a balance between public R&D programs and governmental 

market introduction programs for energy technologies that are still not fully competitive. In order to 

gain a better understanding of the learning process and learning curves, a model of the phenomenon 

of learning is sketched. Learning curves provide a connection between the input and output of a 

learning system. The following sections introduce considerations of the learning system. 

3.3.1 The Input-Output-Model of Learning 

Wene [24], based on Ashby [25], presented a simple model of the cybernetic theory to a learning 

system. The learning system could, for instance, be a company producing photovoltaic (PV) modules 

or wind turbines. In a competing market, the learning system evaluates the impact of the output on 

its environment and adjusts its internal process flow to improve the performance. These internal 

improvements are based on the experience of converting an input to output. The learning curve 

describes the performance as the ratio of the output to input, which is improved over time (more 

precisely, by increasing the output). The input is normally measured in monetary units (costs com-

prise materials, personnel, sales, marketing, and general expenses), and the output is mostly meas-

ured in physical units (for example, installed power (kW) or produced electricity (kWh)). This provides 

the cost per physical unit as a quality measure. 

 

Figure 3-3: An input-output-model of learning from cybernetic theory (Own representation based on [24] and 
[1]) 

The model clarifies that learning is the result of activities, which produce output that is subsequently 

valued by market participants. This means that technologies that do not participate in the market will 

not experience the learning effects that lead to the downward slope of the learning curve. Hence, it 

can be stated that new technologies cannot become competitive solely through R&D [24]. However, 

this does not mean that the importance of R&D should be neglected, but that R&D plays a crucial 

role in bringing technology to the point where it can be established in the market. Even at this point, 

R&D plays a significant role as a complementary measure for the development of the technology in 

the market. However, the cybernetics-oriented input-output model presented here does not provide 

any information about the processes within the learning system [24] [1]. 

3.3.2 Areas of learning and their implications for learning curves 

To gain a deeper understanding of industrial learning, it would be essential to have theoretical con-

siderations on technology and knowledge and their derived innovation (change in technology) and 
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learning (change in knowledge). When we refer to technological learning and thus what learning 

curves describe, we refer to both changes in technology and in knowledge [12]. Depending on the 

perspective, the analysis of technology focused on various individual aspects. As the original mean-

ing of the technology is closer to that of knowledge in the discussed context, classifications of tech-

nology have been mostly made as classifications of the knowledge contained in the technology [26].  

In order to describe technology with the help of knowledge, this knowledge can be subdivided into 

the following three basic areas: conceptual knowledge, process knowledge, and expertise [26]. Con-

cept knowledge describes the knowledge of the product’s design and its manufacturing process (i.e., 

plans thereof), process knowledge refers to the knowledge of how a product is produced (implemen-

tation of the plans), and expertise is the knowledge acquired through or relevant to the use of a 

product or the operation of a system.  

In today's economy, companies often use the knowledge that they do not own by buying products 

that already contain a lot of knowledge. To address this problem, Rosenberg [26] coined the terms 

embedded and non-embedded knowledge. Embedded knowledge refers to knowledge obtained in 

the early stages of innovation, which is thus contained in the product itself. Non-embedded 

knowledge refers to the way a product is manufactured, used, or operated. 

According to Pieper [12], this implies the following for the theoretical concept of learning curves: 

based on the three described types of knowledge, a model for describing the sources of learning or 

experience (acquisition of knowledge) can be derived. 

First, knowledge can be acquired during the development and design process of a product, if already 

existing knowledge is insufficient. This may improve the utilization of information technology or tar-

geted R&D concerning the development of the product. 

Second, knowledge can be acquired throughout the process of production (the part of learning de-

scribed by Wright [13]), for example, through improvements in logistics, distribution, outsourcing, or 

increasing the production speed. If the product itself does not undergo any change, then it would 

imply that the knowledge is not embedded. However, experience in production can also lead to 

suggestions for changes in the design of the product and thus to changes in the concept of 

knowledge, thereby leading to the embedment of knowledge. 

Third, learning can take place through the use or operation of a plant, which would lead, for example, 

to increased efficiency of plant use; this would imply the non-embedment of knowledge. In the case 

of feedback on the development aspect, however, knowledge can also lead to a change in the plant 

design and thus elevate the concept knowledge to embedded knowledge. 

Thus, according to Pieper [12], today's concept of learning curves describes technological learning 

at a higher systematic level. In this context, learning means increasing knowledge in the three areas 

described above, all of which should be included in the description of the learning curves. As de-

scribed above, the learning system is very complex. If learning curves include all the three areas of 

knowledge (concept, production, and usage), then the choice of description of costs should be taken 

into account. If costs are stated as costs per installed capacity, then learning effects in the area of 

operation of the plant are not considered. In addition to savings in maintenance and service, this 

would also include, for example, the increased efficiency of an energy conversion plant that can 

generate more electricity from the same installed capacity. 

3.3.3 Structural technological changes 

An important question is how a research breakthrough or structural technological changes in pro-

duction processes affect learning curves. An example of this could be the development of new high-
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temperature resistant materials for gas turbines. Importantly, it is a radical change in technology, as 

opposed to a gliding change. 

According to Wene [24], structural changes are seen as a discontinuity in the learning curve in the 

form of a double knee, as shown in Figure 3-4. A radical change makes it possible to change the 

entry point of the learning curve and, possibly, the learning rate. It is assumed that the two variants 

A and B are similar and thus variant B can benefit from the experience gained from variant A. 
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Figure 3-4: Structural technological change (Own representation based on [24]) 

The predominant view of an entire industry, instead of individual companies or even individual prod-

ucts, produces a significant outcome in that many smaller technological breakthroughs are contained 

in the entire learning curve in exactly the manner described above, which can be easily missed at 

the first glance. 

3.3.4 Structural changes of the market 

Often, detailed data about costs are not available, and the analyst has to deal with the price data. 

The relationship between cost-based and price-based learning curves was analyzed by the Boston 

Consulting Group [12]. A complete price-cost cycle of launching a new product consists of four 

phases. In the development phase, the first-party supplier offers its product below its cost to bring 

the product to the market. The first-party supplier usually has some market power when his costs 

fall below prices. In this case, the supplier has the opportunity to keep prices stable, since additional 

market entrants generally have higher initial costs. During this time, the losses throughout the de-

velopment phase can be compensated. Gradually, the competitors learn and reduce their costs. This 

leads to an unstable situation in which the difference between prices and costs increases. In the 

following phase, prices fall faster than the costs. According to the Boston Consulting Group, the 

progress rates in this area are around 60%, with predictions of large fluctuations. In the last phase 

of the price-cost cycle, the situation stabilizes, and prices stay around a fixed price/cost ratio. Thus, 

in a stable market, the learning rate of the price-based learning curve is identical to the learning rate 

of a cost-based learning curve. However, it is important to separate the two phenomena: technolog-

ical change, which can be identified with the cost learning curve, and structural changes in the mar-

ket, which are reflected in the price learning curve. The latter refers to phenomena that are outside 

the learning system. Both phenomena can occur simultaneously, which further complicates the anal-

ysis. The difficulty in determining costs may mislead the analyst into deducing the price learning 

curve as an indication of technological change. However, this should be avoided in any case be-

cause conclusions cannot be drawn on the cost learning curve due to the kinks of the price learning 

curve [12]. 
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3.3.5 Influence of governmental R&D and market introduction programs 

To understand the impact of government intervention, that is, R&D and market introduction pro-

grams, it is necessary to open the black box of the input-output model (see Section 2.2.1). Watanabe 

et al. [27] have developed a model that demonstrates the interplay between public R&D, industrial 

R&D, production, and technological knowledge acquired through R&D. 

 

Figure 3-5: Impact of (public) R&D and market launch programs on the learning system (Own representation 
based on [24] and [1]). 

The above representation is based on the simple learning model (input-output model). An increase 

in output leads to an increase in production, which stimulates industrial R&D. This increases the 

level of technological knowledge, which further boosts production and reduces costs. Thus, the cycle 

strengthens itself; it is referred to as the “virtuous cycle” [27]. An important finding is a double boost 

in production, which emerges from an increase in the output on the one hand and improvements in 

the technological knowledge through R&D on the other hand. This supports the thesis of the im-

portance of the governmental R&D in stimulating the private R&D and launch programs for learning 

the processes of a new technology. 

It is evident that public R&D can initiate the learning process within the industry, but cannot have a 

direct impact on overall costs. In order to allow cost reductions, public R&D must be included in the 

internal (private) R&D process. The special feature of this cycle is that self-reinforcement of the 

learning process cannot occur without the market component (production of output). Here, again, 

the significant importance of market participation becomes clear [12].  

Therefore, the analysis of Watanabe et al. [27] proposed the following two-stage technology policy. 

First, public R&D is required to initiate research concerning uncertain technological issues that pose 

a high investment risk, followed by R&D designed to stimulate industrial R&D. Second, the market 

launch assistance is needed to ensure the market launch of technologies that are not yet fully com-

petitive. The two-step technology policy proposed by Watanabe et al. [27] only provides a rough 

direction. The question arises as to whether learning curves can be used to obtain accurate indica-

tions of suitable political measures for promoting innovation.6  

                                                
 
6 For the commercialization of solar-swimming pool systems in Germany, an ex-post analysis showed the 
potential use of learning curves to assess public funding [21]. The solar-swimming pool heating was supported 
by a publicly funded research, development, and demonstration program between 1975 and 1987. The case 
study also suggested that data obtained should be interpreted with caution. In the transition from a collector to 
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Policymakers must apply an assessment methodology to decide whether to continue or terminate 

such a program, owing to stagnation in technology or market readiness. Based on the observed 

learning curve, the outstanding learning investments can be estimated, and hence can contribute to 

determining whether to continue or terminate a program. The termination of the support program 

ultimately depends on the assessment of the willingness of market participants to make the out-

standing learning investments. At this stage, wherever appropriate, the state can provide support by 

facilitating favorable framework conditions such as the endogenization of environmental costs. This 

shows that learning curves are a systematic way of assessing data and weighing arguments in favor 

of or against the continuation of a public funding program. Like all methods, it must be used with 

caution and compared with other information. Learning curves do not replace healthy judgements 

but help the decision-makers to broaden and sharpen their observations [24]. 

The EXTOOL program (Experience curve: a tool for energy policy programmes assessment), funded 

by the European Commission, has been addressing the question of how different policy support 

programs can be evaluated using learning curves. Wind energy programs in Denmark, Germany, 

Spain, and Sweden were analyzed and compared. The combination of measures was the same in 

all countries, which was R&D combined with investment and production subsidies. However, the 

time horizon and range of the measures varied [28]. The result of the analysis shows that the as-

sessment of the impact of individual measures (e.g., R&D alone) with learning curves is not possible; 

the result also showed that the cost reduction trend does not differ due to the different measures 

observed. Rather, learning curves describe the total cost reductions that result from the combination 

of measures. However, learning curves can be used successfully to assess the success or failure of 

the entire funding program, and the criteria for this are accelerating the increase in the installed 

capacity or the electricity produced and the associated cost reduction (i.e., learning rate). 

The research also shows that, despite different levels of government subsidies, similar results can 

be achieved in installed capacity and cost reduction. Hence, it can be concluded that, in some coun-

tries, government support was higher than necessary. However, there are limitations of the learning 

curves as evaluation criteria of individual supporting measures. For this purpose, additional methods 

complementary to the learning curve need to be developed [28]. 

In addition to assessing the overall success of policy measures, learning curves can also be used to 

assess the cost-effectiveness of these measures. In this regard, the total learning investment nec-

essary to achieve the cost-reductions is compared to the level of governmental support. A system-

wide approach that uses learning curves based on the total electricity produced from wind energy 

and total government subsidies proves to be suitable. However, EXTOOL's research shows that, 

despite a large amount of data available, the development of learning curves based on the total 

electricity produced from wind energy was not possible [28]. Rather, all the previously developed 

learning curves for wind energy are presented based on the installed power. Thus, learning curves, 

at least for the wind energy sector, are not suitable for assessing the cost-effectiveness of political 

support programs. 

                                                
 

absorber technology between 1982 and approx. 1985 - 1987, a knee curve of the learning curve described in 
Section 3.3.3 can be observed. When extrapolating a learning curve, based on all data in 1983, it can be seen 
that the projected learning investment might have been significantly high to have led to the termination of the 
program. However, the realization that the technology is at the point of a structural change may lead an analyst 
to consider this in own deductions and discuss the continuation of the program. Since 1990, solar swimming 
pool heating has been fully commercial, and, today, it is cheaper than fossil alternatives. Paid learning invest-
ments can be recovered in this way. 
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3.3.6 The dynamic of learning 

In the learning curve concept, the variable “time” is often not a relevant variable because the basis 

of technological learning is not the advancement of time but the production of output [12]. However, 

the right timeframe is a significant factor when assessing the (market) chances of technology and 

the expected total costs of an energy transition aimed at reducing CO2 emissions. How can we esti-

mate the proliferation speed of technology and the speed at which the cost reductions can be real-

ized? The development period of carbon-free or low carbon technologies depends crucially on policy 

measures (carbon taxes, the scope of government R&D, and market introduction programs) and 

economic factors (such as economic growth). Furthermore, the market assessment of market par-

ticipants plays a major role in the decision to invest in new technologies. 

Another question focuses on the optimal development of renewable energies over a period of time. 

Wene [24] informs that the development must achieve a fine balance between slow expansion 

(break-even point is further in the future) and fast expansion (expansion is faster than the technology 

can learn, which leads to a waste of learning investment). In this case, the government must identify 

suitable measures to balance these two characteristics, such as degressive feed-in tariffs, as they 

exist in Germany. For an effective learning process, it is important that the learning takes place on a 

global level, that is, the experiences in one country should also be transferred to other countries. 

This has already been noted for wind turbines in Europe [28]. Conversely, the market introduction of 

technologies must take place at a regional level [24]. 
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4 Literature review on learning rates 

The experience or learning curve concept is a method used as part of a techno-economic analysis 

of future technologies and their costs. They are used to transfer past cost reductions to future cumu-

lative production levels and thus be able to estimate the future costs. The derivation of learning or 

experience curves leads to a specific learning rate, which indicates a proportional reduction of the 

costs for each doubling of the cumulative capacity or production. Therefore, for the calculation of 

future costs, the learning rate of technology or component is a crucial parameter. Therefore, a liter-

ature review has been conducted on learning rates to gain information on learning rates for different 

technologies and components, which serve as an input parameter for the calculation model CoL-

LeCT (see chapter 7) for calculating the potential for cost reductions of power-to-gas systems 

through technological learning. 

4.1 Learning rates for energy technologies 

In the following section, the results of the literature review undertaken by Rubin et al. [11] regarding 

power plant learning rates are shown. The results also summarize projected learning rates estimated 

for the two emerging technologies of interest – carbon capture and storage (CCS) and integrated 

gasification combined cycle (IGCC) – for which a substantial empirical dataset has not been devel-

oped till date for the power plant applications. The literature review of learning rates for electric power 

generation technologies by Rubin et al. [11] reveals that most of the studies report learning rates (or 

progress ratios) calculated by one-factor learning curve approaches (see chapter 3.2.1). In a smaller 

number of studies, two-factor learning curve models (see chapter 3.2.2) that comprise both learning-

by-doing and learning-by-researching are applied. Overall, there are technologies that have particu-

larly high learning rates (fast-learners) and technologies that have a much lower learning potential 

(slow-learner). Fast-learning technologies include, for example, the semiconductor industry and pho-

tovoltaics, while wind energy represents slower-learning technologies. 

Rubin et al. [11] found that most of the learning rate studies focus on solar PV systems and onshore 

wind. The range of learning rates of the different technologies differs significantly. In some cases, 

the range contains negative as well as positive values. This means that costs have increased as well 

as decayed with increased production (most notably for nuclear power plants). Rubin et al. [11] con-

cluded that “no single estimate of a technology learning rate can be considered “robust.” Additionally, 

the author states that power plant technologies using fossil fuels like coal and natural gas have less 

likelihood of exhibiting a variance regarding the range of learning rates when compared to renewable 

energy technologies (wind, solar, and bioenergy). This observation may be explained by different 

levels of progress, scales of deployment, and timeframes of the analysis. 

Based on the literature review, Rubin et al. [11] attests that although prices decrease along with 

costs over a long period of time generally, they are biased by market structure, subsidies, high mar-

ket demand, monopolies, oligopolies, and other factors. Consequently, the market price is often con-

sidered an unsatisfactory indicator of cost in non-equilibrium markets [29]. Rubin et al. [11] postulates 

that this can particularly affect the scale and significance of learning rates for renewable energy 

technologies, which have been the focus of many government regulatory and/or incentive programs 

in the past years. 

Studies on two-factor models that include separate rates for learning-by-doing (LBD) and learning-

by-researching (LBR) show that the outcome of R&D spending is larger than that of the LBD effect. 

However, the difficulty of acquiring complete and reliable data for R&D spending for a particular 

technology has significantly limited the application and use of this two-factor model for technology 

forecasting (see chapter 3.2.2). 
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Table 4-1: Range of reported one-factor and two factor learning rates for power generation technologies elaborated [11] 

Technology and 
energy source 

No. of 
studies with 
one factor 

No. of studies 
with two 
factors 

One-factor models Two-factor models 
Years covered 

across all 
studies 

Range of 
LR1 

Mean  
LR 

Range of 
rates for 

LBD2 

Mean 
LBD 
rate 

Range of 
rates for 

LBR3 

Mean 
LBR 
rate 

Coal          

PC  4 0 5.6-12% 8.3% - - - - 1902-2006 

PC+CCS 2 0 1.1-9.9%d  - - - - Projections 

IGCC 2 0 2.5-16%d  - - - - Projections 

IGCC+CCS 2 0 2.5-20%d  - - - - Projections 

Natural gas          

NGCC 5 1 -11 to 34% 14% 0.7-2.2% 1.4% 2.4-17.7% 10% 1980-1998 

Gas turbine 11 0 10-22% 15% - - - - 1958-1990 

NGCC+CCS 1 0 2-7%d  - - - - Projections 

Nuclear 4 0 <0 to 6% - - - - - 1972-1996 

Wind          

Onshore 12 6 -11 to 32% 12% 3.1-13.1% 9.6% 10-26.8% 16.5% 1979-2010 

Offshore 2 1 5-19% 12% 1% 1% 4.9% 4.9% 1985-2001 

Solar PV 13 3 10-47% 23% 14-32% 18% 10-14.3% 12% 1959-2011 

Biomass          

Power generation 2 0 0-24% 11% - - - - 1976-2005 

Biomass production 3 0 20-45% 32%     1971-2006 

Geothermal 0 0 - - - - - -  

Hydroelectric 1 1 1.4% 1.4% 0.5-11.4% 6% 2.6-20.6% 11.6% 1980-2001 

1 … LR (learning rate) = 1–2Ɛ … Ɛ (elasticity of learning) - see equation 4 for a one-factor learning curve 
2 … LBD (learning-by-doing) rate = 1–2α … α (elasticity of learning-by-doing) - see equation 6 for a two-factor learning curve 
3 … LBR (learning-by-research) rate = 1–2β … β (elasticity of learning-by-research) - see equation 6 two a one-factor learning curve 

 



D7.5 Report on experience curves and economies of scale Page 36 of 131 

 

Since Rubin et al. [11] have not considered fuel cells, hydrogen, and carbon capture in their study, 

further literature research on the following technologies have been conducted: 

 Wind energy 

 Photovoltaic energy 

 Fuel Cells 

 Electrolyzer 

 Carbon capture 

For the well-developed technologies like wind energy and PV, only historical data are used for the 

learning curve analysis. For the other technologies, due to a lack of data availability, available his-

torical data and forecasts of scientists or expert estimates of the producing companies are integrated. 

However, some obstacles complicate the comparability of the studies. Different characteristics of the 

learning curves as well as different system boundaries can be observed. These differences lead to 

deviations in the learning curve results. 

Table 4-2 and Figure 4-1 show the mean learning rate of the gathered information and the standard 

deviation. 

Table 4-2: Overview of the mean learning rates of different energy technologies 

Type Mean learning rate Standard deviation 

Wind [11], [30], [31], [32], [33], [34], [35], [36], [22], [37], [38] 12.8% 8.1% 

Photovoltaic [11], [35], [36], [39], [40], [41], [42], [43]  20.9% 8.4% 

Fuel Cells [44], [45], [46], [47], [48], [49], [50] [51], [52] 17.3% 6.9% 

Electrolyzer [50], [14], [53] 9.6% 5.5% 

Carbon Capture [50], [54], [55], [56] 10.4% 5.4% 

 

 

Figure 4-1: Overview of the mean learning rates of the considered technologies 

The overall median for learning rates for developing energy technologies (wind, PV, fuel cells, elec-

trolyzers, and carbon capture) is about 13%, however, with a wide range from 2% to 47%.The me-

dian learning rate of 13% is also used by Agora [57] and Zapf [58] for estimations concerning the 

PtG systems.  

Although there were several obstacles while performing a comprehensive analysis of learning rates 

for energy technologies, it can be said that, despite the differences in variables, learning effects can 
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always be observed, and they are within a certain range. Thus, it can be stipulated that, for similar 

technologies, a similar reduction in costs can be achieved.  

While Table 4-2 includes several references for technological learning of carbon capture technolo-

gies, it is necessary to mention that those values cover only the exploitation of CO2 from flue gases 

in industrial applications. This primarily means carbon capture from industrial combustion and other 

carbon emitting processes as a method for reducing the greenhouse gas (GHG) emissions. While 

the suitability of these, mostly fossil, carbon sources as a feedstock for renewable product, like SNG, 

can be discussed, the far less questionable renewable resources for CO2, including biogas upgrada-

tion, ethanol production, or direct air capture, are not part of these research results. For those 

sources, a general literature review on observable learning rates was not constructed due to the 

following reasons: 

 Even if some technologies used for separating carbon from flue gases can be reused in a 

similar way for other diluted or high purity sources, the variety of potential applications (re-

newable and non-renewable) is huge. Beyond that, the capture efficiencies and therefore the 

costs are highly dependent on initial CO2 concentration and impurities in the raw gas. There-

fore, while a general prediction about learning rates would not be meaningful, an individual 

investigation for all potential resources is not feasible. 

 Currently, in the early state of CCU, carbon capture from industrial processes is performed 

as a process step mandatory to meet requirements of the core product of the individual pro-

cess, irrespective of whether it is the achievement of emission targets (e.g., in power plants) 

or upgradation of product gases for further usage (e.g., biogas upgrading). Hence, invest-

ment costs for carbon capture or separation technologies cannot be separated from actual 

plant costs as they are a part of the process. 

 If CO2 is treated as a mere operating resource for PtG plants, independent of the original 

source process, then an investigation of cost reduction potentials based on learning curves 

would seem principally conceivable. However, in this case, it has to be considered that those 

cost reductions are not only dependent on technological learning but also on a wide variety 

of additional parameters particularly emerging from the following regulatory frameworks: 

o Development of costs for emission certificates 

o Profitability for the “producer” of CO2 

o Utilization of CO2 in other technologies besides PtG 

o Differentiation of fossil and renewable carbon sources 

Consequently, within this deliverable, the learning curve effects for carbon capture technologies were 

not further investigated. The costs for CO2 as an operating resource for the PtG process have been 

included in the calculation, when necessary, as current costs, as stated in chapter 5.3, with a focus 

on technologies used in the project STORE&GO. 

4.2 Learning rates for methanation and other comparable technologies 

As described in the previous section, similar technologies share comparable learning rates. There-

fore, for the second part of the literature research, other relevant technologies with a focus on 

methanation have been conducted. 

Within the research on learning rates of the catalytic and biological methanation process, no infor-

mation on learning rates has been found. However, in order to obtain comparative values, a research 

on learning rates for similar processes in the chemical industry has been performed. Table 4-3 shows 

the considered catalytic processes [59], [60], [61]. 
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Table 4-3: Considered catalytic processes 

Process Catalyst Catalytic reaction 

Double contact process [62] Vanadium(V)oxide (V2O5)  2 SO2 + O2 ⇌ SO3 

Steam reforming [63] Nickel-based 
CnHmKk + (n-k) H2O ⇌  

n CO + (n+m/2-k) H2 

Fischer-Tropsch process [64], [65] Iron, nickel, cobalt or ruthenium  CO + 2 H2 ⇌ CH2 + H2O 

Haber-Bosch process [66] Iron(II,III)oxide (Fe3O4)  N2 + 3 H2 ⇌  2 NH3 

Ostwald process [67] Platinum 4 NH3 + 5 O2 → 4 NO + 6 H2O 

The processes shown in Table 4-3 have been considered because all the reactions are performed 

with a heterogeneous catalyst. A heterogeneous catalytic reaction occurs when the reactants and 

the catalyst are present in different phases [68]. In the case of the methanation process, a nickel 

based catalyst is used.  

The catalytic reactions for the methanation process are shown in Eq. 7 and Eq. 8 [69]:  

 CO + 3 H2 ⇌ CH4 + H2O     -206 kJ*mol-1 Eq. 7 

 CO2 + 4 H2 ⇌ CH4 + 2 H2O     -164 kJ*mol-1 Eq. 8 

As shown above, the Fischer-Tropsch and steam reforming processes display similarities in the re-

action and the catalyst, and hence these two processes are considered for the research. The double 

contact process, Haber-Bosch process, and Ostwald process have been considered since they are 

exothermic catalytic reactions, and therefore have a design that is similar to the methanation pro-

cess. 

The literature does not show any usable data on learning rates for most of the considered processes. 

A few techno-economic analyses have been conducted for the processes. However, none of the 

studies have considered experience behavior, with the exception of an analysis of steam methane 

reforming conducted in one study. It shows a learning rate for investment costs of 11 ± 6% for steam 

methane reforming. The reason for the deviation can be attributed to a lack of data points in the 

analyzed data [14]. 
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5 Current investment costs of power-to-gas-processes 

In order to evaluate the future technology costs of PtG systems, this section examines the current 

costs of the main components. This analysis includes data gathered from relevant literature as well 

as cost estimates and experience values from STORE&GO project partners referring to the erected 

demo plants. These current costs serve as an input parameter and thus as a starting point for the 

calculations with the model CoLLeCT for calculating the potential for cost reductions through tech-

nological learning. 

5.1 Current investment costs of electrolyzer 

The following section aims to give a brief overview of the estimated investment costs of the different 

electrolyzer types. The information in chapter 5.1.1 is partly based on the deliverable D8.3 “Report 

on the costs involved with PtG technologies and their potential across the EU”. 

5.1.1 Literature review on AEC and PEMEC 

In [70], a system analysis of the PtG technology was carried out. One of the chapters dealt with 

investment costs of the AEC and PEMEC systems. The study revealed the difficulty in indicating 

existing specific investment costs because the system costs primarily depend on the purpose of the 

field of application. Therefore, the given costs must be treated as guideline values. The specific 

system costs for AEC and PEMEC were based on price information from electrolyzer manufacturers 

in the year 2014. The specific investment costs for an AEC with a hydrogen production rate of about 

100 Nm³/h (app. 0.5 MWel) can be estimated with about 1,800 €/kWel. The costs declined to 

1,200 €/kWel for an electrolyzer with 500 Nm³/h (app. 2.5 MWel). By way of comparison, PEMEC 

incurs higher costs for a similar production rate of about 3,500 €/kWel (0.1 MWel) and 1,750 €/kWel 

(1 MWel). According to various manufacturers and research institutes, the costs of an entire electrol-

ysis system can be approximately divided in 50% stack costs (AEC: 40–50% and PEMEC 50–60%), 

10–20% power electronics, and 30–40% remaining costs (BoP). 

 [71] estimated the total costs of an alkaline and a PEM electrolysis system with a rated power of 

5 MW and 100 MW. The costs were related to a 5 MW system at the development level in the short-

term future (2017) and to a 100 MW system in the long-term future (2030). The calculations were 

based on a stack cost model as well as on price offers by an engineering company and a manufac-

turer. The remaining costs (planning, steel construction, and fittings, among others) were estimated. 

The specific investment costs for the 5 MW AEC system were about 1,070 €/kWel and were signifi-

cantly lower for the 100 MW system of about 520 €/kW. In comparison, the 5 MW PEMEC system 

has specific investment costs of about 960 €/kW. For a 100 MW PEMEC plant, specific investment 

costs were estimated at 300 €/kW.  

[72] calculated the specific investment costs for the alkaline pressure-less and pressurized electro-

lyzers on the basis of offers and price requests from the year 2002 to 2009 and summarized them 

in a graph. Depending on the hydrogen production rate (up to 500 Nm³/h), the specific investment 

costs range from around 750 €/kWel to 6,000 €/kWel. Additionally, the costs for PEMEC were deter-

mined; in this case, there was no information on the prices of electrolyzers possessing a production 

rate greater than 10 Nm³/h (equals to approximately 50 kWel). The investment costs in the range of 

0.5 to 6 Nm³/h (2.5–3 kWel) were obtained from a manufacturer through telephonic conversation, 

and the costs were in the range from 50 to 200 Nm³/h (250–1,000 kWel) as per theoretical calcula-

tions. Depending on the hydrogen production rate of the PEMEC, the specific investment costs ap-

proximately range from 900 €/kWel (for 200 Nm³/h) to 10,000 €/kWel (for 0.4 Nm³/h). For the calcula-

tion of the hydrogen production costs, which is carried out in this study, existing specific investment 

costs of about 2,500 €/kW for a PEMEC (30 Nm³/h) and 1,000 €/kW for an AEC (500 Nm³/h) have 
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been used. For a future scenario, specific investment costs of a 1,200 €/kW PEMEC (250 Nm³/h) 

and AEC 800 €/kW (1,500 Nm³/h) have been used. 

 [73] provided an overview of the current status and a forecast for the development of alkaline and 

PEM electrolysis technology. The key figures for the electrolyzers were taken from various literature 

(2010–2013), presentations, reports from the US Department of Energy, and data sheets from man-

ufacturers. For an alkaline electrolyzer, the specific investment costs ranged from approximately 

1,100 to 580 €/kW, depending on the year of installation from 2012 to 2030. In comparison, the costs 

of a PEM electrolyzer are higher, ranging from approximately 2,090 to 760 €/kW. The stated costs 

were not directly linked to an electrolyzer of a certain size and referred to systems with a rated power 

that was lower than 5 MW and as high as 10 MW.  

[74] published key data on energy generation technologies, and thus also on electrolysis technolo-

gies at regular intervals. The data were taken from well-founded public sources as well as from 

expert information. The specific investment costs for alkaline electrolyzers with a nominal power of 

less than 3.4 MW were specified with 1,400 €/kW in the year 2015. The costs were projected drop 

to 1,000 €/kW in the year 2020. The costs for a PEMEC are comparatively high and amount to 

6,000 €/kW, however, with a very low rated power of 45 kW, and these costs are expected to drop 

to 1,000 €/kW in the year 2020.  

The data given in [75] were based on assessments by scientific actors and operators of existing pilot 

plants. Manufacturers already had the capacity to offer large AEC for less than 1,000 €/kW in the 

year 2016. The cost reduction to around 700 €/kW beyond the year 2030 is considered realistic. The 

PEM technology is currently still significantly more expensive, with costs of around 2,000 €/kW. As 

per the study, a reduction to 700 €/kW is projected for the period following 2030. 

 [76] addressed the economic potential of the Power-to-X applications. The costs of the electrolysis 

technologies were derived from current literature sources. The current specific investment costs for 

AEC were stated as 2,000 €/kW (rated power 500 kW), 1,500 €/kW (rated power 1 MW), and 

1,000 €/kW (rated power 10 MW). In addition to the rated power, the investment costs for PEMEC 

were also distinguished in terms of the year of installation. As per the study, in the subsequent years, 

the CAPEX is projected to reach 1,000 €/kW (rated power 10 MW). The costs are projected to de-

crease in the year 2030 to 700 €/kW (10 MW electrolyzer) and 1,000 €/kW (1 MW electrolyzer). The 

study also shows that the CAPEX would witness a further decline in the year 2050 and reach 500 – 

550 €/kW (1 MW electrolyzer) and 350–400 €/kW (10 MW electrolyzer). 

The specific investment costs stated in [77] were based on different literature sources. The study 

revealed that the costs for alkaline electrolyzers (1,000 €/kW to 5,000 €/kW) had a very wide range 

due to scale effects. The specific costs of 1,000 €/kW were for a MW-scale plant. For a PEM elec-

trolyzer, the specific investment costs in the year 2014 were quite higher at about 2,000 €/kW.  

In the article [78], a price level of approximately 1,800 €/kW was given for an alkaline electrolysis 

plant in the lower MW range. The price was based on the offers. The information that the investment 

costs for PEMEC are a factor of 1.5 to 2 higher than that of the AEC is taken from [72]. 

 [79] analyzed 16 offers of commercially available electrolyzers in a power range of 0.35 to 3.35 MW. 

The investment costs included costs for electrolyzer, transportation, installation, and commissioning. 

The investment costs of AEC ranged from 2,100 $/kWH2-LHV (output 54 kgH2/h) to 5,700 $/kWH2-LHV 

(output 5.9kgH2/h) and the AECs had an efficiency between 52% and 62%. The PEMECs had higher 

costs between 3,100 $/kWH2-LHV (output 47 kgH2/h) and 6,600 $/kWH2-LHV (output 9 kgH2/h). However, 

their efficiency was higher, between 57% and 64%. This resulted in specific investment costs of 

approximately from 875 €/kWel (3.35 MW) to 2,370 €/kWel (0.35 MW) for AEC and 1,370 €/kWel 

(3 MW) to 2,915 €/kWel (0.6 MW) for PEMEC. 
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The investment costs for a PEM electrolyzer in [80] were derived from data provided by industrial 

partners. These costs were assumed to be at about 1.5 $/W for a 5 MW and about 1.25 $/W for a 

30 MW electrolyzer. This resulted in specific investment costs of about 1,130 €/kW (rated power 

5 MW) and 940 €/kW (rated power 30 MW), respectively. 

 [81] discussed Siemens announcement of the second product generation of PEM electrolyzer with 

a nominal power of 1.25 MW and costs below 2,000 €/kW. The study also revealed that further im-

provisation would reduce the costs significantly to reach below 900 €/kW by 2018. Additionally, the 

third generation electrolyzers were projected to have a rated power of about 100 MW. 

In the PtG Roadmap for Flanders [82], most of the assumptions for the specific investment costs of 

alkaline and PEM electrolyzers for the years 2015, 2030, and 2050 were taken from the manufacturer 

Hydrogenics and from literature. It is also mentioned that the assumptions are in line with [73]. The 

specific investment costs for an alkaline electrolyzer system are stated to range from approximately 

660–2,000 €/kW, depending on the rated power and year of installation. Comparatively, the costs 

for PEM electrolyzers are in a range of 550–1,500 €/kW and therefore slightly lower. 

Since only a few reliable data on investment costs for electrolyzers are available and the future 

development of these costs is also uncertain, an expert elicitation was conducted in [83]. The costs 

are based on a 10 MW electrolyzer system, which is powered by intermittent renewable energy 

sources. The hydrogen is generated at a pressure of 20–30 bar and fed into the natural gas grid. In 

the year 2016, the reference values were 1,100 €/kW for AEC and 2,100 €/kW for PEMEC. As per 

the experts’ estimates for the year 2020, the specific investment costs for AEC systems would be in 

the range of 700–1,400 €/kW and approximately 800–2,200 €/kW for PEMEC. Given the current 

R&D status and lack of scalability in production, the projected costs in the year 2030 would be slightly 

lower when compared to 2020. The costs for AEC and PEMEC range from 700–1,000 €/kW and 

700–1,980 €/kW, respectively. Furthermore, it is reported by the experts that the costs of electrolyz-

ers can be reduced by up to 24% if the R&D funding is increased. Additionally, the scaling-up of 

production can lead to a further reduction of 17–30%. 

According to the information in [84], obtained from different projects based on requests, in the year 

2017, the investment costs for alkaline electrolyzers were approximately in the range of 900–

2,500 €/kW at a power of about 0.5–2.5 MW. For PEM electrolyzers, the costs are about 1,600– 

2,000 €/kW for a rated power of 0.5–2 MW. 

Assessment of literature data 

An overview of the data points from the literature regarding the investment costs of electrolyzers 

(AEC and PEMEC) is shown in Figure 5-1. The different characteristic parameters of the data points 

show a wide variation as follows: specific investment costs from 300–8,000 €/kW, the year of instal-

lation from 2009–2050, and the rated power of the electrolyzer from 0.05–100 MW. 
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Figure 5-1: Overview of the specific investment costs for different electrolyzer technologies related to the year 
of installation and rated power (Sources: [83], [73], [71], [74], [75], [80], [77], [72], [81], [76], [79], [70], [82], [84], [78]) 

In order to make reliable statements regarding the costs of an electrolyzer system, the individual 

data points must be categorized. Therefore, different electrolyzer technologies were examined sep-

arately. Furthermore, the time of the installation was divided into five sections (< 2015, 2015–2017, 

2018–2020, and 2030 and 2050). For these time periods, the range and the average value of the 

specific investment costs and rated power were calculated, respectively. Additionally, the statistical 

outlier (6,000 €/kW for a 45 kW PEM electrolyzer) was identified and no longer included in further 

analyses. Further, in order to minimize the influence of the plant size on the specific investment 

costs, the current costs were also calculated for a standardized 5 MW plant size on the basis of the 

scale factor method, where 0.7 was assumed for the exponent (scale factor). The results of the 

comprehensive review are summarized in the following table. 

Concerning alkaline electrolyzers, the current (the year 2015–2017) specific investment costs ac-

cording to data in existing literature are in the range of about 900–2,500 €/kW and have an average 

value of about 1,500 €/kW, see Figure 5-2. The average rated power in this time section is about 

3 MW. It can be assumed that the costs will halve in the future (about 750 €/kW in 2030). If the 

current costs are standardized for an alkaline electrolyzer with a rated power of 5 MW, then they will 

decrease to about 1,100 €/kW. 

 
Figure 5-2: Range and average value of the specific investment costs for alkaline electrolyzers (AEC) related to 

the year of installation (Sources: [83] ,[73], [71], [74], [75], [77], [72], [76], [79], [70], [82], [84], [78]) 
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Compared to an alkaline electrolyzer, the current (2015–2017) specific investment costs of a PEM 

electrolyzer are slightly higher, with an average value of about 1,650 €/kW (average rated power of 

about 4 MW) and a range of 950–2,100 €/kW (see Figure 5-3). Additionally, in the case of the PEM 

electrolyzer, the costs are projected to decline by half in the year 2030. The current average costs 

are expected to drop to approximately 1,200 €/kW if the data from the literature with their different 

rated power are standardized to a 5 MW PEM electrolyzer. 

 
Figure 5-3: Range and average value of the specific investment costs for PEM electrolyzers (PEMEC) related to 

the year of installation (Sources: [83],  [71], [73], [74], [75], [76], [77], [80],  [81], [78], [79], [70], [82], [84]) 

In conclusion, according to current information, it can be stated, that the current specific investment 

costs for both AEC and PEMEC are quite similar. Nevertheless, the current costs for PEM electro-

lyzers are slightly higher than that for alkaline electrolyzers, on an average, with about 1,650 €/kW 

for a rated power of about 4 MW and 1,500 €/kW for a rated power of about 3 MW, respectively. 

Even though the costs are standardized to a 5 MW electrolyzer, this difference would remain, and 

the costs of a PEM electrolyzer are, on an average, about 1,200 €/kW, which is more than the alka-

line one with 1,100 €/kW.  

5.1.2 Literature review on SOEC 

Since SOEC was not a part of the research on the deliverable D8.3 but was seen as a promising 

technology, a literature analysis of investment costs was performed for this deliverable. The infor-

mation was classified into information about the specific stack costs and the total specific costs for 

an SOEC system. 

The two main influences on the investment costs according to literature are the year of installation 

and the rated power. Therefore, for an 8–10 MW SOEC, Mathiesen et al. forecasted a CAPEX of 

860 €/kW, 280 €/kW, and 210 €/kW for the years 2020, 2030, and 2050, respectively. A lifetime is 

assumed to be about 10–20 years. Since a connection to the electric grid leads to extra costs, the 

grid bound SOEC CAPEX are expected to be 930 €/kW, 350 €/kW, and 280 €/kW for 2020, 2030, 

2050, respectively. The maintenance costs are expected to be 3% of the CAPEX. All costs are based 

on a large-scale plant. As an example, concerning the difference between large-scale and small-

scale plants, the following values have been stated by Mathiesen et al.: 710 €/kW for small-scale 

and 280 €/kW for large-scale plants [85]. 

Scataglini et al. [86] showed the same effect. They showed how to achieve the target stack cost of 

238 $/kW of the US Energy Department. It is mentioned that the target stack price can only be at-

tained if the annual SOEC installation reaches 100–250 MW. It also calculated different scenarios 

with production rates of 10, 1,000, 10,000, and 50,000 systems per year with capacities of 1, 10, 50, 

100 and 250 kW. For the scenarios, the costs differ from 166 $/kW (143 €/kW)* to 5,387 $/kW 
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(4,629 €/kW). It is stated that low costs can be primarily attained through thinner cells and stack 

components as well as through improved production automation [86]. 

Butter et al. [87] considered specific investment costs of 1,500 €/m² (375 €/kW with 4 kW/m²) as the 

reference value for large-scale industrial manufacturing. The lifetime of the SOEC stacks is stated 

to be 3 years. As process parameters, Butter et al. set the temperature at 850°C, which is a standard 

condition for SOEC systems. The year of installation has not been mentioned.  

Besides literature that compares costs of plants with different capacities, there exists literature that 

predicts comparatively low CAPEX, less than 500 €/kW, even for SOEC in an early stage of devel-

opment. A few examples of such studies are Manage et al. [88], Jensen et al [89], Giglio et al. [90], 

Milobar et al. [91], and the US Energy Department [92]. Manage et al. mentioned that the investment 

costs are 235 $/kW (202 €/kW)* for the year 2020 [88]. Jensen et al. stated that the US Energy 

Department used specific costs of 350–550 $/kWh (303-476 €/kWh)* based on a 5 kW SOEC. It is 

operated with 5% energy that is lost in the heat exchange. The cells are operated at 950°C, and they 

have a lifetime of 5 years [93]. The study by Giglio et al. calculated target stack costs of 540 $/m² for 

future SOEC stacks, housing costs accounting for 1,000 $/m², 82 $/kW for the AC/DC rectifier, 

48 $/m² for the transportation, and 148 $/m² as foundation costs. The energy density was assumed 

to be 4 kW/m². Hence, the overall specific costs would be 516 $/kW (444 €/kW)*. The stated stack 

modules have a power of 1 MW. All assumptions are based on the information from the US Depart-

ment of Energy. The year of installation has not been mentioned [90]. Milobar et al. calculated the 

specific costs of SOEC with 500 $/kW (430 €/kW)* for a 25 kW SOEC capacity. The year of instal-

lation has not been mentioned [91]. The US Energy Department reported an amount of 287 $/kW 

(246 €/kW)* as stack investment costs and a BOP with 533 $/kW (453 €/kW)*. The department also 

reported future stack investment costs with 99 $/kW (85 €/kW)* and the BOP with 331 $/kW 

(282 €/kW)*. The plant capacity was given at 50,000 kg/d [92]. 

However, since SOEC is a new technology and hence not available on an industrial scale, it is hard 

to predict the CAPEX. In this regard, there are studies that predict a much higher CAPEX for SOEC. 

The following three studies serve as examples. Nevertheless, especially, the first and third studies 

show a high deviation in their results, which supports the thesis that it is hard to predict future costs 

for a new technology like SOEC. Schmidt et al. discussed capital costs for SOEC system with 3,000–

5,000 €/kW. The capital costs projected for the year 2030 are 1,040–4,250 €/kW [83]. Seits et al. 

discussed the CAPEX of SOEC with 1,500 €/kW. This forecast considered the next 5–10 years [94]. 

Concerning the SOEC system, Rivera-Tinoco et al. reported a CAPEX between 4,000 and 

11,000 $/kW (3,429–9,430 €/kW). However, Rivera-Tinoco et al. also mentioned that the costs 

would reduce in the future due to the economies of scale [95]. 

Besides literature that analyses only the total CAPEX, there are studies where only stack prices are 

given. However, since the stack costs are mainly responsible for the CAPEX in SOEC systems, the 

two studies found that only state stack costs are shown. For a renewable solid oxide cell with 100 kW 

stacks, specific costs of 874 $/m² are estimated. The lifetime of the stacks and the other components 

are estimated to be 5 years and 20 years, respectively [96]. With an energy density of 5 kW/m², the 

specific costs amount to 175 $/kW (150 €/kW).* Brynolf et al. mentioned stack costs that vary from 

100 to 300 $/kW (86–257 €/kW)* and 500 to 1.200 $/kW (429–1,029 €/kW) [97]. 

*All US$ values are converted to € with 1 $ = 0.86 €. 

Assessment of literature data 

Since SOEC is a very new technology that is under development, it is hard to get reliable sources 

on investment cost. Table 5-1 shows a brief summary of the analyzed sources and the stated values. 

The different characteristic parameters of the data points exhibit a wide variance as follows: specific 



D7.5 Report on experience curves and economies of scale Page 45 of 131 

 

investment costs from 140–9,400 €/kW, year of installation from 2016–2050, and the rated power of 

the electrolyzer from 8 MW to large scale. Additionally, the given information in the studies is often 

incomplete. A constant assertion through all sources is that SOEC has an important and future ori-

entated role in the field of PtG. Therefore, it is expected that investment costs of SOEC will reduce 

and the technology will become more efficient and robust in the future. Although the data on current 

investment costs are very poor, for further calculations, the investment costs (initial value) for a 5 MW 

SOEC system is fixed at 2,500 €/kW. 

Table 5-1: Summary of the analyzed sources and the stated costs and setups of SOEC based plants (1 $ ≙ 
0.86 €) 

Specific 
system costs 

Stack costs Year Power Source 

€/kW €/kW 

 

MW 

 

860 - 2020 8-15 [85] 

280 - 2030 8-15 [85] 

210 - 2050 8-15 [85] 

143 

 

- Large Scale [86] 

4,629 

 

- Small Scale [86] 

- 375 - - [87] 

202 - 2020 - [88] 

303-476 - - - [93] 

373 116 - 1 [90] 

430 - - - [91] 

703 246 2016 - [92] 

369 85 Future - [92] 

3,000-5,000 - 2017 - [83] 

1,040-4,250 - 2030 - [83] 

1,500 - 2025 - [94] 

3,429-9,430 - 2016 - [95] 

- 150 - 0.1 [96] 

- 86-257 - Large Scale [97] 

- 429-1,029 - Small Scale [97] 

 

5.2 Current investment costs of methanation units 

A key factor in the project STORE&GO is the methanation process, which contributes toward main-

taining SNG in the existing European infrastructure as a clean energy source, but with an already 

advantageous and continuously improving environmental footprint.  
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First, the gas input in STORE&GO is not syngas7, the normal source for methanation, but a mixture 

of H2, CO2, and, depending on the source, CO. Therefore, the focus will be on information about this 

input. Second, in the project, three processes will be used – see work package 2 (WP2), WP3, and 

WP4. The WP2 and WP4 both demonstrate the cooled-reactor methanation. The biological 

methanation will be demonstrated in WP3.These three processes would be the focus of the data 

collection and can be compared with a “commercial standard” of the fixed bed methanation. 

In this chapter, the most common methanation processes are described based on the available data 

on the current situation. This includes technological parameters and costs. Since scale effects and 

cost reduction developments (learning effects) differ for different parts of the installations, costs are 

split up to the maximum extent possible. 

The methanation technology is still in the development phase, and information on its costs is limited. 

In other words, there are several uncertainties regarding the acquisition of the information on invest-

ment costs for methanation plants (currently, there are no commercial facilities in the context of PtG). 

Since manufacturers maintain the confidentiality of the existing specific costs for methanation plants, 

it is difficult to determine real costs. Therefore, the reviewed literature sources provide a rough esti-

mate of the costs of a methanation reactor for both chemical and biological methanation systems. 

The determination of investment costs is further complicated by a variety of different processes, 

reactor types, and operating modes. Also the quality of the SNG is an issue, if it is injected in the 

gas net. For instance to reach a high methane content and a low hydrogen content in catalytic 

methanation the last reactor should work under relative high pressure and low temperature. Further-

more, in most of the analyzed studies, the system boundaries of the indicated investment costs are 

not well-defined, thereby further limiting the comparability. Moreover, costs for methanation plants 

strongly depend on the carbon dioxide source used and therefore the quality and purity of the CO2 

stream. Usually, the specific investment costs are expressed in €/kWCH4 (rated CH4 output power). 

If the costs are related to the rated power of the electrolyzer of the PtG plant, then the unit would be 

€/kWel. 

The screened studies on the investment costs of catalytic and biological methanation systems are 

briefly described below, and the subsequent sections summarize and analyze the data. 

5.2.1 Literature review on chemical methanation 

In a techno-economic study of PtG concepts, [98] estimated the total investment costs (apparatus, 

steel construction, foundations, electrics, instrumentation, and engineering) of catalytic methanation 

plants of three different sizes (5 MWSNG, 30 MWSNG, and 110 MWSNG). Depending on the size, the 

total investment costs for the plants were estimated at € 1.5 m, € 4.9 m, or € 12.1 m, which led to 

specific investment costs of around 300 €/kWSNG, 160 €/kWSNG, or 110 €/kWSNG. 

 [99] investigated the impact of process pressure for thermochemical production of SNG from ligno-

cellulosic biomass. The study reveals that specific costs of about 190 €/kWSNG are expected to facil-

itate methanation at 15 bar when compared to approximately 550 €/kWSNG at 1 bar. 

 [100] estimated specific investment costs of about 580 €/kWSNG for the methanation part in a 

10 MWth bio-SNG plant (production of SNG from biomass) run at atmospheric pressure. For a larger 

plant with a power of 100 MWth, which is run at a pressure of 7 bar, the costs drop to about 

107 €/kWSNG.  

                                                
 
7 Syngas, or synthesis gas, is a fuel gas mixture consisting primarily of hydrogen, carbon monoxide, and some 
amount of carbon dioxide. 
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In a PtG analysis [70], the investment costs for methanation in a PtG plant with an electrical input of 

48 MWel (equals to about 27 MWSNG output) was stated to be about 140 kWel (equal to about 

250 €/kWSNG). 

 [101] provided a graph, based on several sources, for investment costs of chemical methanation 

plants against the rated power. The study revealed that costs decrease with an increase in capacity, 

and they were estimated at approximately 1,500 €/kWCH4, 1,000 €/kWCH4, and 750 €/kWCH4 for sizes 

of 1 MWCH4, 3 MWCH4, and 6 MWCH4, respectively. This resulted in costs related to the input power 

of the electrolyzer that was estimated at about 840 €/kWel, 560 €/kWel, and 420 €/kWel (by assuming 

a combined efficiency of 56%). However, the study mentioned that since currently small methanation 

(< 20 MWCH4) plants are not offered as a standard or mass-produced product on the market, the 

investment costs seem to be relatively high. The costs are expected to drop to 300–500 €/kWCH4 

(170–280 €/kWel) if the market for small scale methanation develops. 

For an assessment of different PtG process chains, [102] assumed the investment costs of a chem-

ical methanation plant (there are no details regarding the CH4 production rate of the plant mentioned 

in the study) to be 720 €/kWCH4, which is equal to approximately 400 €/kWel by assuming a combined 

efficiency of 56%. 

 [103] carried out a literature review on renewable PtG. The specific investment costs reported in the 

study had a wide range from 130–1,500 €/kWSNG and were not highly reliable. The study stated that 

the estimation, which was conducted by the Outotec GmbH (see also [98]) based on size-specific 

calculation, of 400 €/kWSNG and 130 €/kWSNG for a 5 MW and a 110 MW plant, respectively, might 

be the most realistic cost estimates. This implies that the other estimates are too high. 

 [104] analyzed the costs of producing renewable gases. For this purpose, specific investment costs 

for a 3.7 MWCH4 methanation plant were estimated at approximately 3,300 €/kWCH4 (2013), 

2,000 €/kWCH4 (2016), 660 €/kWCH4 (2020), and 600 €/kWCH4 (2030). It must be noted, however, that 

the study’s assumptions were conservative and would be rated lower by other market participants. 

Additionally, further cost reductions were conceivable, but they could not be assessed reliably on 

the basis of the current data situation. 

For the STORE&GO project, the project partner ECN calculated the costs for a first of a kind 3 MW 

SNG methanation plant. The investment costs are around 1,000 €/kWCH4, but might be higher if gas 

streams have to be compressed. 

5.2.2 Literature review on biological methanation 

In [105]’s assessment of various PtG concepts including biological methanation, the specific invest-

ment costs (engineering, construction, machinery, and peripherals, excluding the provision of H2) 

were indicated by two plant manufacturers with approximately 340–1.200 €/kWSNG, depending on 

the size of the plant (1 MW to 110 MW). 

 [106] reported significantly low costs of 1.150 €/kWSNG for a rather small methanation plant with 

130 kWCH4 output and approximately 100 €/kWSNG for a plant with 10 MWSNG output. 

In [107], the investment costs of biological methanation were estimated at 400 €/kWel for a 2 MWel 

PtG plant in the year 2017. At the beginning of the year 2016, the costs were twice as high. Due to 

upscaling in size, these cost reductions seams to be possible in 2017. 

In a fact sheet for biological methanation plants, [108] estimated the specific investment costs to 

range from 700 to 1,500 €/kWCH4 (bioreactor, engineering, approval, and installation). The costs were 

projected to drop to a range from 300 to 700 €/kWCH4 in the future (year 2030). 
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 [101] also provided a graph for investment costs of biological methanation against the capacity (the 

study mentioned that the graph is based on the data in [106]; however, they differ from each another). 

The specific investment costs decrease with an increasing methane output of the plant and were 

estimated at approximately 320 €/kWCH4, 120 €/kWCH4, and 90 €/kWCH4 for an output power of 

200 kW, 1,000 kW, and 2,000 kW, respectively. 

 [109] quantified specific investment costs for a biological methanation demo/pilot plant (combined 

with an electrolyzer with a rated power of 1 MW) in the year 2016; the costs were estimated at 

1,200 €/kWel (about 1,800 €/kWCH4). The study projected the cost to decrease in the near future 

(2025) to approximately 700 €/kWel (about 1,050 €/kWCH4). 

Based on an analysis done by Electrochaea for a 1 MW biological methanation plant for a 

wastewater treatment plant, and owing to the lack of information in existing literature, [110] assumed 

investment costs of 145 CHF/kWel for the methanation reactor and another 337 CHF/kWel for the 

BOP of the methanation reactor; these costs totaled to about 480 CHF/kWel. This resulted in the total 

specific investment costs for the methanation plant at about 715 €/kWCH4 (overall efficiency 0.56; 

1 EUR2014 = 1.2 CHF2014). 

In the project “Power-to-Gas via Biological Catalysis (P2G-Biocat)” [111], there was done an estima-

tion on investment costs for biological methanation plants with different plant sizes, based on current 

information. The CAPEX range from 10.9–63.54 Mio.DKK for 1 to 50 MW power. This resulted in the 

total specific investment costs for about 1,440 €/kW, 370 €/kW, 240 €/kW, and 170 €/kW for a power 

of 1 MW, 10 MW, 20 MW, and 50 MW, respectively (1 DKK2017 = 0,132 €2017). 

5.2.3 Assessment of literature data 

An overview of the specific investment costs for chemical and biological methanation plants from the 

screened literature sources is presented in Figure 5-4. The range of the costs is very large (chemical 

methanation 55–3,300 €/kWSNG and biological methanation 90–1,800 €/kWSNG). Additionally, a sig-

nificant variation is observed for the nominal SNG output power of the plants (chemical methanation 

1–1,000 MW and biological methanation 0.1–110 MW). Furthermore, some studies do not state 

whether these are current costs or future costs. It must be noted that in the case of a lack of infor-

mation, in the following analyses, the study would have considered the year of dissemination as the 

year of installation. 

 
Figure 5-4: Overview of the specific investment costs for chemical and biological methanation plants related to 

the year of installation and the nominal output power of the plant (Sources: [98], [99], [100], [70], [101], [102], [104], 
[105], [106], [107], [108], [101], [109], [111]) 
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In order to be able to make better statements on the specific costs of methanation plants, both tech-

nologies were examined separately. Furthermore, statistical outliers were identified and no longer 

included in subsequent analyses. Both, the data point with the smallest and the largest cost value 

as well as the data point with the smallest and largest rated output power of the plant were deleted. 

Further, in order to minimize the influence of the plant size on the specific investment costs, the 

current costs were also calculated for a standardized 5 MW plant size on the basis of the scale factor 

method, where 0.7 was assumed for the exponent (scale factor). The results of the comprehensive 

review are summarized in the following table. 

In Figure 5-5, the specific investment costs of the analyzed chemical methanation plants with the 

related rated output power and the specific investment costs for a standardized 5 MW plant are 

shown. The costs vary between 100 and 2,000 €/kWSNG and the rated power between 3 and 

110 MW. On average (from 2006 to 2030), this results in costs of about 530 €/kWSNG with approxi-

mately 30 MW SNG-output. If the current investment costs (2012–2017) are standardized on a 5 MW 

plant, then they would total to about 600 €/kWSNG. 

 
Figure 5-5: Specific investment costs (and standardized for 5 MW) and rated output power of chemical methana-

tion plants related to the year of installation (Sources: [98], [99], [100], [70], [101], [102], [104]) 

The characteristics of the biological methanation in terms of specific investment costs are shown in 

Figure 5-6. The costs range from 100 to 1,650 €/kWSNG, and the rated power of the examined plants 

varies between 0.2 and 50 MW. Compared to the chemical methanation, the average (2012–2030) 

costs of the biological methanation are about 780 €/kWSNG and therefore about 250 €/kWSNG higher. 

However, this is probably due to the fact that the average rated power of the plants is significantly 

lower, with approximately 6 MW when compared to 30 MW. If the current investment costs (2012–

2017) are standardized on a 5 MW plant, then they would incur approximately 600 €/kWSNG and 

would thus be similar to costs for a chemical methanation plant. 
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Figure 5-6: Specific investment costs (and standardized for 5 MW) and rated output power of biological 

methanation plants related to the year of installation (Sources: [105], [106], [107], [108], [101], [109], [110], [111]) 

In conclusion, it can be stated that, according to current information, the current specific investment 

costs for both chemical and biological methanation plants with a rated power of 5 MW SNG-output 

are in the range of 600 €/kWSNG. However, it should be pointed out again that this is only a rough 

estimate because there are no or very few reliable data. 

5.3 Current costs for CO2-capture  

Generally, investment costs for CO2 sequestration are not easy to define. It is reasonable to set a 

reference for specific costs according to the used CO2 source. Affordable sequestration rates 

strongly depend on the concentration of carbon dioxide in the, usually gaseous, source stream and 

the underlying emitting process. As the CO2 sources and the reference values for assessing invest-

ment costs exhibit significant variance, it seems more practical – at least for the usage of carbon 

dioxide in the methanation process – to value the needed CO2 as an operating supply and therefore 

represent its costs as per ton CO2, depending on its source and sequestration technology, respec-

tively. 

5.3.1 CO2 from biogas or bioethanol plant 

Biogas plants with feed-in to the natural gas net lend itself to a source of otherwise unused carbon 

dioxide. Specific costs for CO2 sequestration in such biogas plants are at approximately 12 € cents 

per standard cubic meter of methane. Assuming a CO2 fraction of 40% in the raw gas flow, this would 

lead to costs of about 90 € per ton CO2 (for 2012). However, the sequestration, as well as the re-

moval of impurities (like sulphur), is normally done for the retrieval of biomethane that can be fed in 

to the gas net, and hence costs are assigned to the methane production. In this aspect, the seques-

tration of CO2 is neutral in terms of costs [111, 112]. 

When using biogas as a source of carbon dioxide, it should be noted that the CH4/CO2 mixture can 

be used for further methanation without any additional treatment. Hence, if it is not mandatory to 

separate the feed-in of the biogas from the methanation process, additional costs for CO2 seques-

tration can be totally avoided [111]. 

The costs of carbon dioxide from a bioethanol plant, as a source, would behave in a similar manner. 

In the fermentation process, a high-quality stream of CO2 is accumulated as a by-product. If only this 

method is considered as a potential source, then the sequestration costs would be limited to the 
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costs necessary for the compression of the gas, which can be assumed at about 12–25 €/t CO2 [113, 

112, 114, 115]. If the bioethanol plant uses cogeneration for energy provision, and the CO2 capture 

from the cogeneration process is also considered, then the costs would be  between 42 €[116] and 

111 €[113] per ton CO2 (capturing and compression). 

5.3.2 CO2 from wastewater treatment plant 

Wastewater treatment plants that produce sewage gas, as a source for CO2, have almost the same 

preconditions as biogas plants. As the incoming sewage gas also comprises a high-quality mixture 

of methane and carbon dioxide, it can also be directly used in the following methanation process 

without further treatment and therefore without any additional costs for sequestration of CO2. If, out 

of any reason, the separation of CH4 and CO2 is really needed, same costs as mentioned for biogas 

treatment (90 €/t CO2) can be assumed. 

5.3.3 Direct air capture 

The direct capture of CO2 from the atmosphere is a new technology. The major problem of this 

technology is the low concentration of CO2, currently approximately 410 ppm, in the atmosphere. 

Due to the early development stage only cost estimates are available. Those estimates partially 

exhibit significant variation and are between 150 € and 475 € per ton of CO2 for the current technol-

ogy [111, 117, 118, 119, 120, 121]. Expected future costs with improved technologies are found in 

literature at about 30 $[117] to 300 $[122] per ton of CO2. 

These costs all refer to sequestration by the sorption processes. Though condensation in cryogenic 

distillation processes or separation from the air with membranes would also be possible, those pro-

cedures are presumed to be intense in energy usage [111]. 

5.3.4 Assessment of literature data 

In Table 5-2 the gathered carbon capture costs for CO2 supply of the PtG process are summarized. 

Compared to the previous sections, the data was extended with CO2 from fossil sources, though 

their acceptability for the generation of renewable hydrogen or SNG has to be discussed (e.g. CO2 

can come from waste gases from industrial processes, that cannot be shifted to use renewable en-

ergy, and therefore fossil CO2 cannot be avoided). 

Table 5-2: Average capture costs for CO2 related to industrial sectors 

CO2 Source Capture costs Year Exchange rate Ref. 
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Coal 

34 – 42 2017 0.83 [114] 

19 – 47 2015 - [112] 

20 – 63 2015 0.72 [123] 

Natural gas 

63 – 83 2017 0,83 [114] 

54 – 101 2015 - [112] 

35 – 75 2015 0.72 [123] 

Biomass 54 – 101 2015 - [112] 
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Refinery 

29 – 83 2017 0.83 [114] 

44 – 94 2015 - [112] 

48 1) 2012 - [124] 

97 2014 0.82 [115] 
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CO2 Source Capture costs Year Exchange rate Ref. 
 

 €/tCO2 
 

USD/EUR 
 

Ammonia production 

12 2017 0.83 [114] 

23 – 54 2015 - [112] 

22 2014 0.82 [115] 

Other chemicals 
12 – 52 2017 0.83 [114] 

21 2014 0.82 [115] 

Iron & steel production 

19 – 33 2017 0.83 [114] 

16 – 41 2015 - [112, 124] 

81 – 83 2014 0.82 [115] 

Cement, clinker & lime production 

22 – 35 2017 0.83 [114] 

33 – 69 2015 - [112, 124] 

17 – 37 1) 2012 - [124] 

82 2014 0.82 [115] 

Pulp, paper & board production 
18 – 27 2003 0.79 [116] 

57 – 87 2017 - [125, 126] 
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 Biogas upgrading 
0 – 90 2012 - [111] 

5 – 9 2015 - [112] 

Bioethanol fermentation 

12 2017 0.83 [114] 

0 – 18 2011 - [113] 

25 2014 0.82 [115] 

5 – 9 2015 - [112] 

Bioethanol fermentation (incl. 
cogeneration) 

83 – 111 2011 - [113] 

42 2003 0.79 [116] 

Direct air capture 

150 – 320 2012 - [111] 

22 1) 2012 - [111] 

150 2010 0.75 [117] 

331 – 423 2011 0.77 [118] 

268 – 309 2013 0.72 [119] 

341 – 475 2014 0.82 [120] 

81 – 201 2018 0.86 [121] 

1) long term prediction     

 

As it can be seen, capture costs for CO2 are highly dependent on the source used. While capturing 

from diluted industrial flue gases (combustion of natural gas or biomass, refinery) ranges from 50-

100 €/t, efforts for sources with high concentrations (ammonia production, bioethanol fermentation) 

are substantially lower, reaching values clearly below 50 €/t. Due to the low concentration of CO2, 

direct air capture shows the highest costs that is additionally covered with high uncertainties accord-

ing to the low maturity of the technology.  
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6 Demand potential of power-to-gas products 

According to the theory of technical learning, see chapter 3, the cost of an industrially manufactured 

good decreases by a constant percentage for every cumulative doubling of its produced volume. 

Therefore, for calculating the future investment costs of the PtG-technology, the development of the 

demand for PtG plants is essential. For the calculation of future costs, the demand potential of PtG 

products (hydrogen and SNG) was used, as this will be at least as large as the demand for electricity 

storage by PtG (which emerges from the supply potential of RES). Therefore, the development of 

the demand potential of PtG products until 2050 and thus the installed amount (power) of the main 

components are determined in this chapter.  

In the first step, a literature review of PtG’s demand potential at different levels (national, European, 

and global) is performed. In this literature review, different definitions and distinctive features of the 

PtG demand potential are discussed. Finally, possible scenarios for the development of the demand 

potential of PtG products are defined. These future PtG demands serve as the basis for the calcula-

tion of the cost reduction potential of PtG systems through technological learning (see chapter 9).  

In general, the development of the future demand potential for PtG products (green hydrogen and 

SNG) is subject to fundamental energy and climate policy decisions; for example, the steel industry 

will not adopt renewable energy for production purposes if it is not politically required. As a result, 

the definition of scenarios for the demand potential of PtG products is connected with high uncer-

tainty.  

6.1 Literature review power-to-gas potential 

This section summarizes the results of a literature review of PtG-potential at different levels. Since 

the potential for energy technologies differs in many parameters, the review is divided into three 

parts. First, the PtG-potential was analyzed at a national level, followed by the European and global 

levels. If no additional information is given, the unit GW corresponds to the electrical input power 

GWel. 

6.1.1 Power-to-gas demand potential at a national level 

Different studies have been found to analyze the PtG-potential at a national level. Most of the studies 

have been performed for Germany, but literature for France and Austria has also been investigated. 

Germany 

In the “Energiesystem Deutschland 2050,” the Fraunhofer Institute [127] stated that the optimum 

electrolysis power for an energy system in 2050 would be 33 GW (electrical energy input of 103 TWh 

and a hydrogen output of 82 TWh). The aim of the optimization is to achieve a total energy system 

that would include full coverage of maintenance and operation at minimum full costs on an annual 

basis. A CO2 reduction of 80% through the installation of 147 GW photovoltaic plants, 120 GW on-

shore wind plants, and 32 GW offshore wind plants has been assumed as external conditions. 

Agora Energiewende [128] calculated the necessary electrical power for PtG plants for 2050 with 

26 GW (if 27 GW battery energy storage capacity is installed) and 36 GW installed capacities without 

short-term energy storage. The study assumed a share of 95% renewable energy in its estimations. 

The study “Minimaler Bedarf an langfristiger Flexibilität im Stromsystem bis 2050” [129] assumed 

that short-term flexibility options must be maximized to ensure their usage in cases of a surplus of 

electrical energy. If the short-term storage fails to fulfil the necessary capacities, then it would be 

essential to use long-term storage (i.e., PtG). Concerning the year 2050, this would mean an installed 
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electric power of 89 GW PtG-plants, if enough short-term storage is available. Without considering 

short-term storages, a PtG power of 134 GW must be installed in 2050. 

In a study performed by Jentsch [130] for an 85%-renewable energy-scenario, the use-cost-optimum 

power for PtG energy storage was found to be between 6 and 16 GW. 

Fürstenwerth et al. [57] analyzed the usage of PtG-plants for mobility and chemistry (Power-to-X). 

For 2050, a maximum PtG power of 130 GW was identified, with 6 to 16 GW of electricity storage, 

75 GW for fuel production, and about 59 GW for raw materials of the chemical industry. Since de-

velopment depends on a variety of different factors, from today's point of view, it is hard to forecast 

the usability of PtG. This is also the reason for the fact that the possible installed power is subject to 

a large bandwidth. 

In the study “Power-to-gas (PtG) in transport - Status quo and perspectives for development,” which 

was conducted for the Federal Ministry of Transport and Digital Infrastructure in Germany, three 

different scenarios were analyzed. The main goal was to determine the amount of PtG in 2050 that 

is required to reduce the GHG emissions by about 80% in transportation. Additionally, the necessary 

electricity demand for PtG was calculated. In one scenario, about 614 TWh/a of electricity was re-

quired for the production of hydrogen and methane. [131] This led to an installed electrolyzer power 

of approximately 150 GW (if 4,000 full-load hours are assumed).  

“Deutsche Energie-Agentur GmbH” stated, in their lead study, a requirement of 94 TWh of Power-

to-X (PtX) in 2050 for German mobility, in one of the scenarios aimed at reducing the GHG emissions 

by 80% [132]. This would lead to an installed power of about 16 GW (if 6,000 full load hours are 

assumed). 

Schneider et al. revealed the factors limiting P2G’s potential in Germany; these factors included the 

availability of adequate CO2, lack of internal restricted area, gas grid connection, proximity to RE, 

and scaling losses. On the basis of the theoretical PtG potential of 44.6 GWel in Germany in 2013 

and by applying these limiting factors, Schneider et al. found the usable PtG potential to be about 

15.4 GWel. Due to these restrictions, the usable potential was only 35% of the theoretical PtG poten-

tial [133].  

Breyer et al. analyzed different scenarios for an electricity supply of 100% renewable energy from 

an economic point of view. It is stated that, depending on the scenario, in 2040, an installed electro-

lyzer power of 43 to 45 GW will be necessary [134]. 

As per the investigations conducted by the FNB Gas on the “Strom und Gasspeicher” scenario, there 

would be a need for an installed electric PtG power of 134 GW or 244 TWh of green gas production. 

The “Strom und grünes Gas” scenario necessitates an installed capacity of 254 GW or 646 TWh 

green gas production. This model based analysis has investigated all the sectors (power, mobility, 

industry, and heat) [135].  

A study by the ewi Energy Research & Scenarios GmbH analyzed two scenarios for Germany, 

namely, the revolution (greenhouse gas reduction through electrification of all sectors and an in-

crease in electricity production from renewable energy) and evolution (CO2 reduction through opti-

mization of existing infrastructure and increase in renewable energy production) scenarios. The rev-

olution scenario showed a demand for 267 TWh of power-to-methane, 129 TWh of power-to-fuel, 

and 52 TWh of power-to-hydrogen capacity for 2050. Concerning the evolution scenario, the capac-

ity increase was higher with 445 TWh of power-to-methane, 136 TWh of power-to-fuel, and 52 TWh 

of power-to-hydrogen [136]. This would result in an electrolyzer power of 137 to 194 GW; this de-

duction is based on the following assumption: 65% electrolyzer efficiency, 55% of power-to-methane, 

50% efficiency of power-to-liquid, and 6,000 h of full load hours of the electrolyzer. 
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The Enervis energy advisors GmbH stated that the demand for PtG technologies for Germany in 

2050 would be 280 TWh for feedstock, 140 TWh for mobility, and 400 TWh for the heating market. 

The investigated scenario is similar to that of the evolution scenario presented by the ewi Energy 

Research & Scenarios GmbH [137]. This will result in an electrolyzer power of about 248 GW, based 

on the following assumption: 65% of electrolyzer efficiency, 55% of power-to-methane, and 6,000 h 

of full load hours of the electrolyzer. 

France 

According to Scamman et al., France would require about 3.25 TWh of electrical energy in the year 

2030 for producing hydrogen to fuel approximately 773,000 fuel cell electric vehicles (FCEVs). The 

required amount of electrical energy might rise in the year 2050 to 33 TWh, approximately, if 7.3 

million FCEVs are fueled by hydrogen. This would lead to an installed electrolyzer power of about 

5.5 GW [138].  

Spain 

Bailera et al. analyzed two scenarios for Spain. In both scenarios, an increase in the global mean 

temperature would be 2°C in 2100 when compared to 1990. In the first scenario, the demand for 

electricity would increase moderately (1.36% per year), while, in the second scenario, the growth 

would be higher (1.73% per year). The research predicts a potential installed PtG capacity between 

10.5 GW (scenario 1) and 15 GW (scenario 2) in 2040 and 13 to 19.5 GW in 2050 [139].  

Italy 

Guandalini et al. stated that an increase in the installed electrolyzer capacity over 30 GW would 

reduce the attractiveness of hydrogen production because it would be oversized and would not be 

able to run on full load [140].  

Austria 

As part of the project “Greening the gas,” the Energieinstitut an der JKU Linz performed a study 

about the PtG potential in Austria for space heating. It is stated that, in 2030, the annual production 

of SNG would increase up to 100 million Nm³ and up to 500 million Nm³ in 2050. This would result 

in about 5 TWh SNG per year in 2050. According to the conditions, as described below, the demand 

for the installed electrolyzer power in Austria will increase up to 0.3 GW in 2030 or 1.5 GW in 2050, 

respectively [141]. This deduction is based on the following assumption: 65% of electrolyzer effi-

ciency, 85% of methanation efficiency, 55% of total efficiency, 6,000 h of full load hours, LHV CH4 = 

10 kWh/m³, and 1 Mtoe = 11.63 TWh. 

6.1.2 Power-to-gas demand potential at the European level 

The Energieinstitut an der JKU Linz calculated the potential for substituting natural gas in the indus-

trial sector in the European Union (EU) (=SNG potential) to be approximately 3,107 PJ (863 TWh 

SNG). This would result in about 260 GW installed electrolyzer power, based on the following as-

sumption: 6,000 full-load hours and a total efficiency of 55%. Due to the substitution of all oil deriva-

tives in the industrial sector, there would be an additional potential for about 1,398 PJ (388 TWh H2) 

of green hydrogen, which would result in about 100 GW of installed electrolyzer power; this deduc-

tion is based on the following assumption: 6,000 full-load hours and 65% of electrolysis efficiency. 

In the course of process adaption, there would be further potential for green hydrogen in the industrial 

sector of about 906 PJ (252 TWh H2), if all the coal products from the iron and steel industry are 

substituted. This would result in approximately 65 GW of installed electrolyzer power, based on the 

assumption of 6,000 full-load hours and 65% efficiency electrolysis. The total potential for installed 

electrolyzer power in the industry sector in Europe in the year 2050 would be about 425 GW. This 
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implies that, in the year 2050, about 51% of the total energy demand in the industrial sector can be 

covered by green gases (H2 and SNG). 

However, besides the industrial sector, the mobility sector is a major emitter of CO2. The “e-fuels-

study” by DENA and LBST analyzed different scenarios for CO2 reduction in the mobility sector. In 

the gaseous-fuel-dominated scenario, the study investigated an increasing use of hydrogen in elec-

tric power trains, a reduction of 95% of GHGs, and a moderate increase in the mobility. The scenario 

would result in a PtG-potential of 378 GW (1,250 TWh) electrolyzer capacity [142]. 

The key conclusion of the study “Business cases for H2 in energy storage and more broadly power 

to H2 applications” by FCH-JU is that 2.8 GW electrolyzer power may be installed in 2025. This value 

of 2.8 GW is based on sound economics in the power sector [143]. 

As part of the STORE&GO deliverable “D6.3 Impact Analysis and Scenarios design” by Blanco et 

al., different scenarios for the potential of power-to-methane (PtM) for 2050 have been analyzed. In 

about half of the investigated scenarios, the Power-to-Methane capacity is in the range of 40 to 

200 GW. In the “realistic” scenario (95% CO2 reduction, no CO2 underground storage, low CAPEX 

for methanation), there is a need to install about 40 GW (approximately 8% of the total gas demand) 

of PtM in the EU28+ states (EU, Switzerland, Norway, and Iceland). By considering liquefied me-

thane gas as the energy carrier in marine transport, the PtM capacity would increase to 122 GW 

(19% of total gas demand). If all the conditions that favor PtM will occur, then the PtM capacity would 

reach about 546 GW, thereby meeting 75% of the gas demand. The PtM capacity will lead to an 

installed electrolyzer power in the range of about 73 to 993 GW; this deduction is based on the 

assumption of a total efficiency of 55%. 

For comparison, the necessary installed electrolyzer power that would be required to cover the total 

European natural gas demand in 2050 through renewable SNG is estimated. According to the busi-

ness-as-usual scenarios, the “EU Reference Scenario 2016 – Energy, transport and GHG emissions 

– Trends to 2050”  [144], which acts as a benchmark of current policy and market trends, the final 

gas consumption in the year 2050 is estimated to reach about 237 Mtoe (2,750 TWh). This result in 

a SNG potential of approximately 460 GW SNG and a potential of approximately 835 GWel of in-

stalled electrolyzer power, based on the following assumptions: 65% of electrolyzer efficiency, 85% 

of methanation efficiency, 55% of total efficiency, 6,000 h of full load hours, and 1 Mtoe = 11.63 TWh. 

6.1.3 Power-to-gas demand potential at a global level 

Pleßmann et al. calculated the requirements for the power plant and storage capacities at a global 

level by the dynamical simulation of a global, decentralized 100% renewable electricity supply sce-

nario (PV, wind, and concentrating solar power (CSP)). This included batteries, high-temperature 

thermal energy storage coupled with a steam turbine, and the renewable power methane (RPM) 

(generated via the PtG process), which is reconverted to electricity in gas turbines. This would result 

in required global storage capacity of 2,360 GW of electrical input power for the production of RPM 

[145]. 

For comparison, the required PtG potential was also estimated, considering the possibility of the 

global natural gas demand in 2050 being replaced by SNG. A study conducted by DNV GL stated 

that the global demand for natural gas would reach 135 EJ/a (37.5 PWh) in 2050 [146]. With the 

conditions stated below, this would lead to 11.4 TW of installed electrolyzer power at a global level. 

This deduction is based on the following assumptions: 65% of electrolyzer efficiency, 85% of 

methanation efficiency, 55% of total efficiency, 6,000 h of full load hours of the EC, LHV CH4 = 

10 kWh/m³, and 1 Mtoe = 11.63 TWh). 
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6.1.4 Assessment of literature data 

Concerning the PtG potential, the literature review shows the usage of several definitions and dis-

tinctive features, which complicates the direct comparability of studies. The most important differ-

ences in the definitions are addressed below. The determination of the PtG-potential can be based 

on the supply side (e.g., how much surplus electricity is available) or the demand side (there is a 

need for a certain amount of renewable gas). Another differentiation lies in the form of energy (see 

Figure 6-1). The PtG-potential can be exploited in the form of the electrical input power [GWel] po-

tential of the electrolyzer, the hydrogen output power potential [GWH2], or the SNG output power 

potential [GWSNG]. Alternatively, the PtG-potential can also be utilized as an amount of energy (elec-

trical, hydrogen, or SNG). 

Power Grid Electrolyzer Methanation

Electrical 

power 

potential

[GWel]

Hydrogen 

potential

[GWH2]

SNG potential

[GWSNG]

 

Figure 6-1: PtG-demand potential regarded to different energy forms 

Additionally, the indicated potential differs depending on the sector (comprising the power, mobility, 

industry, heat, or multiple sectors). A big impact on the PtG-potential also comprises the discussed 

regions in terms of the geographical extent (national, European, or global) and the composition of 

the energy system (e.g., mainly based on wind power, PV, or hydrogen, and on the amount of RES). 

In some cases, the calculated PtG-potential is subjected to several limitations, including the use of 

only CO2 sources from biogas, use of only surplus electricity, and the location of the plant near wind 

parks or at the site of a biogas plant. Furthermore, in general, due to the fact that the development 

of the energy sector depends on different parameters, it is hard to predict its development. Therefore, 

the analyzed literature has a high deviation regarding the estimated PtG potentials. 

As mentioned earlier, it is difficult to conduct a direct comparison due to the different framework 

conditions of the analyzed studies and papers. Nevertheless, to make rough statements regarding 

the development of the PtG potential, the studies have been divided into groups (sector and region) 

and the PtG potential is defined as the electrical input power of the electrolyzer (see Figure 6-2). 

Most of the analyzed studies are for Germany, and only a few studies deal with the PtG potential at 

a European level or a global level. The PtG potential in the power sector at a national level (Germany, 

Spain, and Italy) is in the middle of the two-digit GWel range. The literature for Germany that consid-

ers the whole energy system (power, mobility, industry, and heat) estimates a PtG potential in the 

lower three-digit GWel range. At a European level, the demand for PtG in the industrial and mobility 

sectors is expected to be in a middle three-digit GWel range. The potential for PtG for all sectors is 

estimated in a high three-digit GWel range. At a global level, which is the most important one for 

predicting cost reductions by learning rates, only one study and one calculation (SNG replaces the 

whole gas demand in 2050) are available. It is estimated, that the PtG potential is up to a lower five-

digit GWel range. Nevertheless, even with the high deviations, all the analyzed literature grants PtG 

a leading role in the future decarbonized energy system.  
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P… Power Sector; M…Mobility Sector; H…Heating Sector; B… Biomass based; I…Industry 

Figure 6-2: Overview of the literature review: PtG demand potential (electrical input power electrolyzer) for different regions and sectors in 2050 
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6.2 Derivation of future PtG demand 

To apply the learning curve theory, it is essential to examine the cumulative produced volume of the 

component (electrolyzer and methanation unit). The cumulative produced volume is in turn directly 

related to the global PtG demand. In order to determine the global PtG demand for the year 2050, 

on the one hand, a literature study was carried out (see chapter 6.1) and, on the other hand, own 

STORE&GO-scenarios were developed. Due to poor data at the European and, especially, the 

global level (only one study and one calculation (SNG replaces the whole gas demand in 2050) are 

available), the literature review gives only a rough idea of the development of the demand potential 

of PtG until 2050. Therefore, additionally, the STORE&GO project scenarios for estimating the global 

PtG demand potential were developed to gain detailed information on the possible installed power 

of electrolyzers and methanation units. 

In general, scenarios serve to identify possible development paths and describe an alternative future. 

The development of scenarios is influenced by many different variables, which are related to the 

past, present, and future and are highly related to fundamental energy and climate policy decisions. 

These variables (e.g., the development of the amount of renewable energy sources (RES), natural 

gas price, and CO2 prices) affect each other very strongly and are, in turn, often difficult to interpret 

and predict. According to the World Energy Scenarios 2016 of the World Energy Council [147], there 

are additional uncertainties—the pace of innovation and productivity, evolution of international gov-

ernance and geopolitical change, prioritization of sustainability and climate change, and the balance 

between the use of markets and state directive policy—which are critical for describing the future 

energy system. This circumstance and the underlying framework conditions (e.g., energy system 

with a high amount of RES, maximum CO2 reduction, or lowest costs) often results in a wide range 

of possible scenarios. Most of the studies dealing with energy scenarios use simulation tools, based 

on many different variables, for predicting a possible development path and describing an alternative 

future. For example, the EU Reference Scenario 2016 [144] acts as a benchmark of current policy 

and market trends and provides a model-derived simulation (e.g., PRIMES) trend projection in cer-

tain conditions (e.g., legally binding GHG and RES targets). Additionally, in the STORE&GO deliv-

erable D6.3 “Impact Analysis and Scenarios design” by Blanco et al., different scenarios for the 

European potential of power-to-methane (PtM) for 2050 have been analyzed by implementing sev-

eral variables in the modelling software TIMES. The World Energy Council [147] uses its tool (the 

global multi-regional MARKAL model (GMM)) for quantifying the scenarios, by accounting for the 

technical and economic parameters, and is driven by input assumptions and optimization algorithms 

to give forecasts. These three methods can be summarized as a bottom-up approach. 

When compared to the aforementioned studies and numerous other studies dealing with energy 

scenarios, the development of STORE&GO scenarios for the global PtG demand in 2050 is based 

on a different, very simple approach—a top-down approach. In order to achieve the transition to an 

energy system with predominantly renewable energy sources, thereby significantly reducing CO2 

emissions and achieving the climate goals, it would be essential to have a high amount of RES and 

renewable energy carriers in the energy sector (power, mobility, industry, and heat). Therefore, for 

each sector, three STORE&GO scenarios with a different amount of renewable energy sources (50% 

= low, 75% = moderate, and 90% = high) are defined. To achieve the amount of RES in each sector, 

the share of energy carriers (especially, hydrogen and SNG are important for STORE&GO) is esti-

mated for an energy system in the year 2050. For different amounts of RES, the following figures 

show the estimated share of various energy sources/carriers of the final energy demand or genera-

tion for each sector in the year 2050.  

Regarding the amount of RES, the STORE&GO scenarios are much more ambitious, such as the 

EU-Reference Scenarios 2016 [144] or the scenarios defined by the World Energy Council [147], as 

these mainly represent an update on or a trend of the current policy to 2050. However, with these 
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current circumstances, it would be difficult to achieve an ecologically sustainable energy supply and 

climate targets. Therefore, the STORE&GO scenarios are more ambitious and defined with a com-

paratively high amount of renewable energy sources. 

The different STORE&GO scenarios for the mobility sector are shown in Figure 6-3. The estimated 

share of SNG/LNG of the final energy demand in the year 2050 is up to 20% and the share of 

hydrogen is up to 25%. Additionally, renewable electricity and biofuels dominate the energy demand 

scenario. The rest is covered by fossil fuels. In comparison to the EU-Reference Scenario were only 

7% RES are forecasted, these values seem very high. However, in a decarbonized mobility sector, 

most of the fuels must be covered by green electrons, green molecules (SNG/LNG and hydrogen), 

and biofuels (not available in abundance). 

 
Figure 6-3: Mobility sector: Share of energy sources/carriers in the EU-Reference and STORE&GO Scenarios 

in the year 2050 

The situation is similar in the industrial sector, where increased electrification of processes is fore-

seen. Conversely, where an increased electrification is not possible, alternative energy sources, 

such as hydrogen and SNG, are used. In the year 2050, depending on the scenario, up to 11% SNG 

and 11% hydrogen can be used in the industry. Additionally, up to 18% of the final energy demand 

that is needed for steam production is covered by renewable SNG. 
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Figure 6-4: Industry sector: Share of energy sources/carriers in the EU-Reference and STORE&GO Scenarios 

in the year 2050 

It is estimated that a large part of the energy demand in the residential sector in 2050, mainly for 

heating, is covered by renewable electricity, SNG (up to 20% for gas heating and 8 % for districted 

heating) and other renewables (like wood). Additionally, a small part can be provided by renewable 

hydrogen.  

 
Figure 6-5: Residential/Heat sector: Share of energy sources/carriers in the EU-Reference and STORE&GO 

Scenarios in the year 2050 

The future power sector in 2050 would be predominately based on renewable energy sources. To 

deal with the fluctuating energy sources, like PV and wind, there would be a need to install production 

capacities if there is no production from these sources. These necessary capacities should also be 

based on renewables, like SNG or hydrogen generation from PtG. It is estimated that up to 8% SNG 

and 2% hydrogen would be needed for producing the additional electric power. 
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Figure 6-6: Power sector – Share of energy sources/carriers in the EU-Reference and STORE&GO Scenarios in the 
year 2050 

Based on the estimated share of SNG and hydrogen and the final energy demand in each sector, in 

the next step, the European and global PtG potential in the sense of installed electrolyzer and SNG 

output power is calculated. Table 6-1 presents the European and global final energy demand in 2050 

for the mobility, industrial, residential, and power sectors. 

Table 6-1: European and global final energy demand in 2050 for the mobility, industrial, residential, and power 
sectors 

Sector European1 [TWh] Global2 [TWh] 

Mobility 4.166 37.169 

Industry 3.059 40.914 

Residential 3.390 42.066 

Power 3.920 39.843 

1 … According to EU-Reference Scenarios 2016 [144] 
2 … According to World Energy Scenarios 2016 of the World Energy Council [147] 

Additionally, for the calculation of the required installed rated power of electrolyzers and methanation 

units for different scenarios in 2050, following assumptions have been made: 

 Average efficiency electrolysis: 75% 

 Average efficiency methanation: 85% 

 Average full-load hours of the PtG-plant: 6,000 h/a 

 Battery Electric Vehicle (BEV) is 70% more efficient as an internal combustion engine (ICE) 

vehicle 

 Fuel cell electric vehicle (FCEV) is 30% more efficient as an ICE-vehicle 

Based on the assumptions made above, the estimated shares of SNG and hydrogen in 2050, the 

final energy consumption in 2050, and the required installed power of electrolyzers and methanation 

units are calculated. These estimates are shown in Figure 6-7 for Europe and global STORE&GO 

scenarios for different amounts of RES. 



D7.5 Report on experience curves and economies of scale Page 63 of 131 

 

 
Figure 6-7: STORE&GO Scenarios: Necessary installed power of electrolyzers and methanation units in the 

year 2050 

At a European level, there is a need for up to 1,240 GW of installed electrolyzer power and 600 GW 

methanation units (SNG output power).This is, depending on the STORE&GO scenario, quite similar 

or slightly higher than the results presented in the literature (see chapter 6.1), wherein the PtG po-

tential (rated electrolyzer power) is estimated in a high three-digit GW range. Additionally, the calcu-

lations in the STORE&GO deliverable D6.3 “Impact Analysis and Scenarios design” by Blanco et al. 

provide similar results in the scenario that favors power-to-methane (about 550 GW), thereby pre-

dicting the need for generating an installed electrolyzer power in the range of about 1,000 GW. This 

demand for PtG products has been calculated by implementing several variables through the mod-

elling software TIMES. Since the results from the STORE&GO scenarios, which are based on the 

relatively simple top-down approach, are comparable to the results from other calculations in the 

literature (which are largely based on the bottom-up approach and simulation models), it can be 

assumed that the STORE&GO scenarios also provide useful values for the global demand for PtG 

products. 

As already mentioned before, for implementing the theory of learning curves, it would be crucial to 

estimate the global PtG demand. Depending on the scenario (low = 50%, moderate = 75%, or high 

= 90% RES), there would be a need to install about 6,500 to 14,200 GW electrolysis power capacities 

and about 3,400 to 7,100 GW SNG-output power capacities to meet the demand in the year 2050. 

These values seem to be very high. However, it is important to remember that, in 2050, in a decar-

bonized energy system, not only natural gas but also other fossil energy sources, such as oil and 

coal, must be substituted by renewable energy carriers. Since all areas of the energy system cannot 

be electrified, green molecules (renewable SNG and hydrogen produced by PtG) would also play an 

important role in the future energy system. In order to cover this relative high demand and to produce 

the required quantities of PtG components (for example about 285,000 electrolyzer systems with an 

installed power of 50 MW would be required), a mass production would be absolutely necessary. 

However, this call for a standardized and mass production-ready design of the products (e.g., no 

individual installation planning or piping). The power-to-gas systems must be planned for the con-

struction on the green field (with the interface power supply, gas connection for feed-in and possibly 

CO2 supply), to meet the requirements for mass-production. 
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7 CoLLeCT - Component Level Learning Curve Tool 

While the results found in the previous sections for learning rates, based on literature (section 4) and 

future demand for PtG products (section 6), would principally allow a first estimation on future invest-

ment costs for PtG applications, the gathered data from literature does not fulfill our requirements. 

With the available data, a distinguishing between different electrolysis or methanation technologies 

as well as between system and stack (electrolysis) or reactor (methanation) cost is hardly feasible. 

To get a more detailed view of technological learning, a component-based approach was developed. 

This allows a comparison of learning effects between different technologies, investigation of the cost 

structure development at the stack/reactor and system levels, and the consideration of spillover ef-

fects from concurrent technology sectors. 

7.1 The idea of component-based technological learning 

Though the aim of using the learning curve theory is to allow prospects of future technology costs, 

this is hardly possible for novel applications at a low technology readiness level (TRL). As significant 

effects, which are describable through technological learning, can only be evaluated after a few 

magnitudes of produced units, the technology under investigation must reach a certain degree of 

maturity to allow an assessment on the further development of production costs. Nevertheless, it is 

often mandatory to consider technological learning, along with an analysis of future potentials of the 

product, when doing techno-economic assessments for such technologies before they enter the 

market. These assessments allow an early investigation of market potentials of a certain product 

and thus allow initial decisions on investments. However, among the aforementioned reasons, alter-

native approaches for an early estimate of the used experience rate must be used. 

An obvious approach would be to use the same experience rates as already found for applications 

with comparable functionality or usage; for example, using the same value for offshore wind power 

plants as found for on-shore wind plants. Though this looks quite promising in theory, it is not as 

easy as expected. This is because minor changes in technology can have a significant influence on 

its observable technological learning process. For example, a comparison between the PEM fuel cell 

(PEMFC) and electrolysis cell (PEMEC) installations would yield significantly different learning rates 

(cf. [46] &[83]). Such differences can have multiple reasons. On the one hand, this could be explained 

by the available price basis, which often only considers installation or rather investment costs instead 

of pure production costs. Due to the fact that the knowledge of the margin between those cost levels 

(production vs. purchase) is often confined to the manufacturers, it is hardly not possible to consider 

influences like price umbrellas or shakeout effects. On the other hand, those differences could be a 

result of learning spillover effects (cf. [148]). In this context, it can be expected that technological 

experiences made on one technology are also reflected in the experience curve of the related tech-

nology; for example, technological improvements on PEMFC are also seen as decreasing costs in 

the learning curves of PEMEC, which cannot be explained by increased cumulative productions of 

PEMEC only. 

Another approach to get a rough and reasonable estimate on experience rates for low maturity tech-

nologies would be to divide the appliance into its subcomponents. Subsequently, the theory of tech-

nological learning can be applied to every single component and subsequently summed up to an 

overall experience curve for the appliance. Therefore, it is mandatory to know the initial underlying 

component and corresponding cost structure in detail. While the acquisition of this data should be 

feasible in many cases, additional learning rates for every single used component should be known 

or estimated. Though this seems a lot more extensive at first as the complexity and the number of 

learning technologies (components) to investigate increases respectively, it gives us additional and, 

in some cases, easier methods to evaluate certain cost reduction effects. This means that, on a 
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component basis, factors that influence the production costs can be partly determined and described 

by simple scaling and innovation processes like the following: 

1. Cost reductions from mass productions:  

By investigating learning rates on a component level, a decline in production costs that occur by 

upscaling of the manufacturing processes can be distinguished easily. 

2. Changing material costs:  

By breaking down an appliance to several contained components, the variety of materials used 

per component becomes more manageable than those for the overall appliance. This could 

allow a more accurate estimation of future production costs development for individual compo-

nents, by investigating past and future changes in costs of the needed raw materials. 

3. Reductions in material usage:  

A minimization of the material variety through analysis at a component level also allows for 

separating and substantiating expected savings in the material usage of cost-intensive parts. 

This especially applies to components using expensive raw materials where raw material costs 

cannot be expected to decrease significantly. 

4. Improvements in manufacturing time:  

For time-intensive manufacturing processes, a distinct lowering of costs can often be gained by 

shortening the processing time. Such improvements can be more precisely determined and 

evaluated at the component level than for the whole appliance. This does not only take (auto-

mated) machine processing costs but also manual working time costs. 

Among the mentioned reasons, though it seems practicable to evaluate the learning or progress 

rates’ applications in the early stages of maturity at a more detailed and component level, this is not 

doable without the corresponding experience made through a few orders of produced units.  

However, many individual components are not reinvented for every single purpose, but they are 

often reused inside many different applications. As a conclusion, it would be reasonable to combine 

both the mentioned approaches to assess learning effects for novel technologies—evaluate cost 

reduction potentials at a component level and use existing experiences, as base data, from compa-

rable component usage inside well-established applications. 

7.2 Implementation in CoLLeCT 

The considerations about the disaggregated analysis and representation of learning curve effects 

explained above and hence needed computer operations, have been combined within the calculation 

model CoLLeCT (Component Level Learning Curve Tool) which was developed especially for this 

purpose. The corresponding basic principles are illuminated in the following sub-sections. 

7.2.1 Module Level 

7.2.1.1 Using the bottom-up approach 

The idea of splitting up energy technologies into its components along with their individual experi-

ence rates to determine their overall learning curves is also stated by Ferioli et al. [16], as mentioned 

in section 3.2.1. As they described, a certain product, process, or technology can be considered as 

an aggregate of several components or costs factors, wherein the costs for each component de-

crease over time according to the learning curve theory. The resulting cost curves can be subse-

quently summed up to present the total costs of the investigated application. 

 𝐶(𝑋𝑡) =∑𝐶0𝑖 (
𝑋𝑡𝑖
𝑋0𝑖

)
−𝑟𝑖

𝑛

𝑖=1

= 𝐶01 (
𝑋𝑡1
𝑋01

)
−𝑟1

+ 𝐶02 (
𝑋𝑡2
𝑋02

)
−𝑟2

+⋯+ 𝐶0𝑛 (
𝑋𝑡𝑛
𝑋0𝑛

)
−𝑟𝑛

 Eq. 9 

 



D7.5 Report on experience curves and economies of scale Page 66 of 131 

 

where the variables are defined as follows:  

𝑋0𝑖  … cumulative number of component 𝑖 produced at time 𝑡 = 0  

𝑋𝑡𝑖  … cumulative number of component 𝑖 produced at time 𝑡  

𝐶0𝑖  … costs of component 𝑖 at time 𝑡 = 0  

𝐶(𝑋𝑡)  … total costs at time 𝑡  

𝑟𝑖  … learning parameter for component 𝑖 (where 𝑙𝑟 = 1 − 2−𝑟) 

While, in Ferioli et al. [16], the approach is simplified by only using the learning and non-learning 

parts (cf. section 3.2.1), this can be used to break down the investigated technology to an appropriate 

level of detail. 

The equation above assumes that the learning effect for every single component relies on its indi-

vidual number of produced units. While this fully comprehensible, we want to consider the observed 

learning on the produced units of the whole appliance only (Eq. 10). Though this excludes some 

factors like spillover effects, it is still adequate and more practical for early learning rate estimations 

at a component level. 
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A similar approached was used by Tsuchiya et al. [52] for the evaluation of mass production cost for 

PEM fuel cells. 

As a result of the determination of learning rates at a component level, components with known 

learning effects can be defined faster and, especially, independent from the other parts. Thus, the 

necessity of estimating single learning rates, and the potential for errors, is reduced to a minimum 

number of individual components. This also allows for specifying relevant scenarios more precisely. 

7.2.1.2 Investigating comparable component usages 

Experience curves for single components, or rather cost elements, can be estimated by means of 

the aforementioned factors from individual forecasts, such as the variation in material costs. For 

other components, where no such data is available, comparable use cases in other applications 

have to be consulted to evaluate certain learning curve effects. On the one hand, this can be done 

through the existing literature; in this context, a screening of the relevant complementary technolo-

gies, as shown in the meta-analysis carried out in Section 4, can provide a fundamental basis. On 

the other hand, it can be suitable to consider values of experiences from manufacturers, which can 

especially allow an estimation regarding the reduction in processing times and material usage. 

The main difficulty in the implementation of the given concepts arises as a result of generating an 

appropriate amount of experience as well as estimating the comparability within and between differ-

ent fields of application. Thus, the involvement of particular (part) manufacturers and their expertise 

can represent an essential advantage in the evaluation. 

7.2.1.3 Combining both disciplines at a Module Level 

The calculation model CoLLeCT offers an opportunity to combine the mentioned approaches. Based 

on the deliberations of Ferioli et al. [16] and Tsuchiya et al. [52], the “Learning Module” to be inves-

tigated is divided into its underlying components. Therefore, the necessary level of detail must be 

chosen adequately and carefully. A classification that is structured perfectly comprises a correspond-

ing high effort for the determination of the learning rates per every single component; however, it 

does not generate any relevant additional benefit in the calculated results. Additionally, the associ-

ated initial cost structure, that is, the distribution of the modules’ costs to the individual components, 
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must be known at the forefront of the work or must be investigated collaterally. Furthermore, the 

appropriate learning or experience rates, respectively, for the individual components and their initial 

costs, or their particular share on the modules’ total costs, must be defined. 

In the course of elaborating and implementing the approach described above, it turned out to be 

necessary to introduce an additional parameter that considers different indirect influences on the 

learning rates of comparable components. This idea is amplified in the following section. 

Necessity of Learning Properties  

According to the considerations described before, although similar or identical components or cost 

factors, respectively, with comparable learning rates, are consulted for the calculations, it would be 

necessary to consider additional criteria that have at least an indirect influence on the learning rate, 

especially, if the learning rates are applied to the particular applications in different extents. Practi-

cally, this means that if a component is used in a similar or even identical manner within two consid-

ered applications, individual properties of the single applications can nevertheless result in different 

experience rates for that component. 

For example, when considering the proton exchange membrane (PEM) of PEM fuel cells (PEMFC) 

and PEM electrolysis cells (PEMEC), comparable experience rates that are related to the material 

usage, can be expected due to the material and component usage. However, concurrently, it is to 

be assumed that, relating to the cell power, there will be a variance in the development of the current 

densities (the cell power per square meter) of these two technologies along with the material usage 

of the membrane. This circumstance can be considered directly within the appropriate learning rate 

per application; however, in relation to the cell power, there would be no easy comparison and inter-

changeability between the learning rates of the two technologies. 

In the presented model, therefore, an alternative approach is chosen. The individual properties, 

which indirectly influence the learning rate of one or more components or cost factors, respectively, 

are stored for every affected component as a so-called “Learning Property.” In this context, each of 

these “Learning Properties” is defined by an initial value and its own learning rate and, likewise, 

follows the basic equations of the learning curve theory as a function of the cumulative production of 

the overall module. 

 𝑃𝑡 = 𝑃0 (
𝑋𝑡
𝑋0
)
−𝑟𝑝

 Eq. 11 

with:  

𝑋0  … cumulative number of productions at time 𝑡 = 0  

𝑋𝑡  … cumulative number of productions at time 𝑡  

𝑃0  … initial value of property 𝑃 at time 𝑡 = 0  

𝑃𝑡  … value of property 𝑃 at time 𝑡  

𝑟𝑝  … learning parameter for property 𝑃 (where 𝑙𝑟 = 1 − 2−𝑟) 

When applying such a “Learning Property” to an appropriate component 𝑖, its value relates to its 

initial value: 

 𝐶𝑖(𝑋𝑡) = 𝐶0𝑖 (
𝑃0
𝑃𝑡
)
𝑒𝑥

(
𝑋𝑡
𝑋0
)
−𝑟𝑖

= 𝐶0𝑖 (
𝑋𝑡
𝑋0
)
(−𝑟𝑖+𝑒𝑥∗𝑟𝑝)

 Eq. 12 

 

where the exponent 𝑒𝑥 represents an “influence exponent” that defines the mathematical depend-

ency between the property and the component. Hence, an “influence exponent” of 𝑒𝑥 = 1 connotes 
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linear dependency, as it is the case with the power density mentioned in the earlier example. A 

quadratic dependency (𝑒𝑥 = 2) would, for example, be necessary, if the variation of the component 

is related to a single dimension (e. g., its length), whereas a two-dimensional relationship (e.g., area-

based) is used for the considered component to which it is applied.  

Therefore, the model supports the application of several such “Learning Properties” to a single com-

ponent as well as the application of a single property to several individual components. Hence, the 

mathematical determination of the total learning curve for the overall module is defined as follows: 

 𝐶(𝑋𝑡) =∑{𝐶0𝑖 ∙∏[(
𝑃0
𝑃𝑡
)
𝑒𝑥

]

𝑛𝑖

𝑗𝑖=1

(
𝑋𝑡
𝑋0
)
−𝑟𝑖

}

𝑚

𝑖=1

 Eq. 13 

 

Additionally, “Learning Properties” offer an opportunity to prepare individual, clearly distinguishable 

learning effects like cost reduction by material savings and those by savings in working or processing 

time, respectively, without the need of additional cost factors within the component structure. 

A similar application of this concept for the power density of PEMFC can also be found in Tsuchiya 

et al. [52]. 

Realization inside CoLLeCT 

Figure 7-1 schematically shows the scope of operation done within our calculation tool CoLLeCT. 

As already described, we try to reuse proven “Learning Components” from well-known technologies 

that are suitable for the investigated application (module). These properties can be modified with 

individual suitable “Learning Properties” to further consider experience effects. Subsequently, the 

investigated “Learning Module” can be constructed from its individual (modified) components and 

can be further examined.  

 
Source: Energieinstitut an der JKU 

Figure 7-1: Schematic view of the functionality of "CoLLeCT" at a "Module Level" 
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The functions implemented in CoLLeCT allow not only a calculation of the modules’ overall learning 

curve. Through the composition from a certain number of individual components, all with their own 

learning rates, the resulting overall learning rate does not remain constant, as it would be when using 

the conventional approach for one-factor learning curves (OFLC), but depends on the underlying 

time-related cost structure. 

This time-related cost structure is another point that can be observed by the usage of the tool. As 

costs for components decrease faster with a higher learning rate (as we assume same units of pro-

duction for all components), the division of the module costs over all used components will vary 

depending on the production values. Therefore, cost shares for components with higher experience 

rates will decrease, whereas those components with low rates will become higher rated. This will 

allow a detailed analysis of the development of the module cost structure—as long as the initial costs 

and learning rates are chosen reliably—including an insight which components are cost determining 

at which level of technological learning. 

7.2.2 System Level 

In the next step, the calculation tool was extended by an additional application level with a lower 

level of detail to allow an assessment of experience curves for overall systems or constructions as 

a whole; this assessment would consist of a compound of different entities of the introduced “Learn-

ing Modules.” 

7.2.2.1 Need for a full system view 

The examination of learning curve’s effects on full system level is accompanied by several additional 

challenges. Basically, when studying relevant literature, it can be observed that the usage of the 

learning curve theory is mainly done for the most novel technology. This means that plant compo-

nents (=modules) with the lowest technology readiness level (TRL) and therefore highest expected 

potential for cost reduction are analyzed primarily (e. g., cell stacks within an electrolysis plant). 

With respect to that, the easiest method would be to split the system into two parts: a “learning” one, 

defined by the novel technologies provided with certain learning curve effects, and a “non-learning” 

part, which describes the miscellaneous conventional plant components. Therefore, the simplest 

case with constant learning rate, without using the “Learning Modules” and their contained “Learning 

Components” as described before, would match the following mathematical form, as already de-

scribed by Ferioli et al. [16]. 

 𝐶𝑠(𝑋𝑡) = 𝛼 ∙ 𝐶0 (
𝑋𝑡
𝑋0
)
−𝑟

+ (1 − 𝛼) ∙ 𝐶0 Eq. 14 

 

with:  

𝑋0  … cumulative number of productions at time 𝑡 = 0  

𝑋𝑡  … cumulative number of productions at time 𝑡  

𝐶0  … initial costs at time 𝑡 = 0  

𝐶𝑠(𝑋𝑡)  … total system costs at time 𝑡  

𝑟  … learning parameter for the learning part (where, 𝑙𝑟 = 1 − 2−𝑟)  

𝛼  … share of the total costs that can initially be attributed to the learning part 

To additionally consider the learning curve effects from the other plant modules, basically the same 

approach as it was applied on module level seems reasonable, the experience curves for the single 

modules are calculated and analyzed individually, and further summed up to present the total learn-

ing curve for the overall system. 
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Although this could have been realized with the methods described for the “Module Level,” an addi-

tional observation level called “System Level” is introduced. On the one hand, this has the advantage 

that the analysis of learning curves and cost structures for modules (and components) can be exe-

cuted independently from the overall system, and hence a differentiation and grouping of the indi-

vidual parts can be done easily. On the other hand, this approach allows a consideration of the 

spillover and indirect learning effects, as described in the following section. 

An observation on system level can be used to assess several “Learning Modules” within the com-

plete system and to conduct a simple estimation of the influence of learning curve effects of well-

established plant components, which are not the main drivers in cost reduction by technological 

learning on a novel technology. 

7.2.2.2 Consideration of spillover and indirect learning effects 

When analyzing the overall systems of novel technologies, wherein peripheral plant components 

(=modules) that indicate the novelty and therefore the potential for technological learning barely or 

only partially are considered, some supplemental aspects must be respected for the evaluation of 

the overall learning effects. Cost reductions that are observable for certain plant modules, which are 

not only used within the investigated system but also inside other technology in an identical or com-

parable manner (e. g., gas conditioning/compression), cannot thoroughly be assigned to the cumu-

lative production of the observed system. 

As described earlier, while this was neglected at a component level, among other things compen-

sated by the usage of “Learning Properties” or rather reduced to the production volumes of the 

“Learning Modules,” such simplifications were avoided at a system level. This can be particularly 

attributed to the fact that, in comparison to the “Module Level,” the individual plant parts primarily 

comprise technologies that are independent of each other. In addition, independent of the chosen 

system boundaries, the major part of technological learning can often be confined to just a few dif-

ferent modules. 

To qualify learning curve effects, which are not directly assignable to the production volumes of the 

complete system, but rather justified by secondary usages within other systems, certain dependen-

cies between the time series of production amounts of the total system and those of the single mod-

ules were defined inside the calculation module. It means that while individual time series for the 

production volumes of every single module and complete system is de-fined, in the next step, the 

relationship between the time series of those two observation levels is determined for every single 

module inside the CoLLeCT. 

Currently, the module includes four different dependencies, as described below: 

 Direct: In this case, the time series, which was defined for the overall system, is used for the 

calculation of the modules’ learning curve. This means that the learning effects for certain 

modules are also directly coupled to the production amounts of the complete system. 

 Independent: In this connection, only the time series of the module is considered for the 

calculation of its learning curve. As a result, an increase in the production of units of the 

system does not have a direct influence on the cost reductions of the module. 

 Indirect: When choosing this dependency, the time series of a module and a system are 

added. In this manner, the direct learning effects from the production of new units of the 

overall system as well as the indirect ones from other usages (in different applications) of the 

particular module are considered. 

 Constant: In this case, the cumulative production of the particular module is supposed to be 

constant; it means that additional units are not produced theoretically. Furthermore, it means 
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that learning effects cannot occur, and hence this dependency can be equated with setting 

the learning rate of lr = 0 for the particular module. 

7.2.2.3 Realization inside CoLLeCT 

The Figure 7-2 again shows how functions at a “System Level” mentioned earlier are realized inside 

our calculation tool CoLLeCT. On the one hand, we take our individual “Learning Modules” defined 

at a “Module Level,” each with their specific time-series of cumulative productions. On the other 

hand, we define our “Learning System” with its own cumulative production over time, comprising a 

certain number of “Learning Modules.” Now, to connect these different time-series between the two 

levels of observation, one of the dependencies mentioned in the previous section is chosen for each 

of the modules contained in the system. 

The calculated results allow the same analysis to be done at a “System Level,” as already stated for 

“Module Level.” Therefore, besides an obvious examination of the overall learning curve for the com-

plete system, the development of the overall learning rate for each data point can be analyzed. 

Furthermore, changes in the cost structure for the system based on technological learning can be 

observed, as described at the “Module Level.” 

 
Source: Energieinstitut an der JKU 

Figure 7-2: Schematic view of the functionality of "CoLLeCT" on "System Level" 
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8 Application of the CoLLeCT approach to power-to-gas 

The following subsections show how the principles of the calculation tool CoLLeCT have been ap-

plied to the water electrolysis and methanation technologies, relating to their use in PtG applications. 

In this context, two different cell stack designs, AEC and PEMEC, have been investigated in detail. 

The elaboration on SOEC stack and methanation reactors had to be minimized due to the lack of 

well-grounded data. 

In the first step, experience curves and possible cost reductions are described in relation to theoret-

ical amounts of produced or rather installed units and systems. Subsequently, an interrelationship 

between annual production and stack/system costs in a specific period is established and discussed 

in section 9. 

8.1 Electrolysis Stack Module 

The analysis of experience curves for electrolysis cell stacks (PEM and alkaline electrolysis cells) 

are described in the following section. Technological data, such as data on current densities or cell 

voltage, are based on literature by Carmo, et al. [149], Bertuccioli, et al. [150], and Smolinka, et al. 

[72], considering that this data is not mentioned in other literature. 

8.1.1 Analysis of the experience curve for PEM electrolysis cells 

To evaluate experience curves for PEM electrolysis cells by using the presented component-based 

approach, a definition of the cell composition is mandatory. In this regard, the classification given in 

the report about water electrolysis in the EU published by E4tech Sàrl and Element Energy Ltd [150], 

since it also provides the initial cost structure, which is also needed in the further steps, was used. 

This component structure used is, on the whole, comparable to data and descriptions available in 

other literature about PEM cell stack technology, be it PEM electrolysis ( [149], [70], and [151]) or 

PEM fuel cell ( [52], [152], and [153]). It consists of 11 individual components and is shown in Figure 

8-1 together with their particular share on total cell stack costs. 

 

Figure 8-1: Break down in the case of PEM electrolysis cell stack, including the initial (2014) cost share of the 
individual components (source: Bertuccioli, et al. [150]) 

In the next step, the appropriate experience rates for each of these components are defined. Follow-

ing the approach of interchangeability of component characteristics between different use cases, as 
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one of the fundamental ideas behind CoLLeCT, the values used are based on the learning effects 

identified and described by Tsuchiya et al. [52] for PEM fuel cell applications. The individual values 

are shown in Table 8-1. 

Table 8-1: Cost shares and learning rates chosen for PEM electrolysis cell analysis 

Component Initial cost share lr* pr** 

Stack assembling 2 % 8 % 0.920 

Small parts 3 % 5 % 0.950 

MEA manufacturing 10 % 8 % 0.920 

Catalyst cathode 2 % 8 % 0.920 

Catalyst anode 6 % 8 % 0.920 

Membranes 5 % 12..22..25 % 0.780 

Current collectors 
cathode 

9 % 12..22..25 % 0.780 

Current collectors 
anode 

8 % 12..22..25 % 0.780 

Bipolar plates 51 % 12..22..25 % 0.780 

End plates 1 % 8 % 0.920 

Pressure plates 3 % 8 % 0.920 

* lr = learning rates used in calculations; bold values were effectively used if not stated differently 

** pr = „progress ratio“ =(1 – lr) 

Sources: initial cost shares based on Bertuccioli, et al. [150]; learning rates based on Tsuchiya, et al. [49] 

 

In general, it can be said that, for technology-independent standard parts, a rather low learning rate 

of 𝑙𝑟 = 0.05 is chosen, while peripheral parts that are specific to the technology are defined with 𝑙𝑟 =

0.08. Learning rates for technology-decisive parts like parts of the membrane electrolyte assembly 

(MEA) of PEM cells were determined iteratively to match experience curves observed from past cost 

development for electrolysis cells.  

As already mentioned, despite all comparability between the PEM fuel cell components used by 

Tsuchiya et al. [52] and the ones used in this calculation for electrolysis cells, there will be techno-

logical differences that are not covered by the learning effects given in Table 8-1. Particularly, the 

power density of the cells, given by the current density and cell voltage, significantly differs between 

the two technologies both in value and evolution. At the same time, when comparing experience 

rates between these two cell designs, for single components that will only be feasible in an area-

related manner. Therefore, the power density acts as the transformation factor between area and 

power related views. As the specific production or installation costs should be analyzed in relation to 

their rated power (e. g. €/kWel), the power density will have a relevant impact on the evaluated learn-

ing curves. Thus, the power density was implemented as a “Learning Property” (cf. section 7.2.1.3), 

influencing relevant (area-related) components to overcome those circumstances. The characteris-

tics of this property and the components influenced by it are shown in Table 8-2. 
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Table 8-2: Characteristics of the used "Learning Properties" for PEMEC 

Learning 
Property 

Initial value lr* Influence 
exponent 

Influenced Components 

Power density 38 kWel/m² -2,5 % -1 

Small parts 

MEA manufacturing 

Catalyst cathode 

Catalyst anode 

Membranes 

Current collectors cathode 

Current collectors anode 

Bipolar plates 

End plates 

Pressure plates 

* lr = learning rate 

 

It can be seen that the chosen learning rate possesses a negative value. This means that the prop-

erty’s value will increase with an increase in the amounts of produced units. It seems feasible as the 

power density is expected to rather increase than decrease in future implementations of the PEM 

cells. Furthermore, the component “Stack assembling” is not influenced by the “Power density” prop-

erty as it is expected to be rather independent of the power gainable per cell area. 

The supposed value for the learning rate is based on a literature review combined with some iterative 

calculations. The NOW study by Smolinka et al. [72] provides mid-term and long-term forecasts of 

electrolysis cell characteristics, which are shown in Table 8-3 below. 

Table 8-3: Present and future characteristics of alkaline and PEM electrolysis technology 

Technology  Present 
(2011) 

Mid-term 

(~2015-2020) 

Long-term 

(~2020-2030) 

AEC 
Power density <1,0 W/cm² <1,3 W/cm² <1,8 W/cm² 

Efficiency 62-82 % 67-82 % 67-87 % 

PEMEC 
Power density <4,4 W/cm² <5,0 W/cm² <5,4 W/cm² 

Efficiency 67-82 % 74-87 % 82-93 % 

Source: Smolinka, et al. (2011): “NOW-Studie: Stand und Entwicklungspotential der Wasserelektrolyse 
zur Herstellung von Wasserstoff aus regenerativen Energien” [72] 

 

The initial value for the power density is an average value based on literature (mainly [150] and [72]) 

on current densities and cell voltages. 

As an initial value for the experience curve, the overall costs for the cell stack at starting time 𝑡 = 0 

must be set (alternatively, fixed costs can be defined for the individual components). In pertinent 
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literature, current system costs (including power supply, system control, and gas drying) for PEM 

electrolysis cells range from 960 €/kWel to 2,100 €/kWel (cf. section 5.1). To further divide these sys-

tem costs to the “Module Level,” detaching the costs for the PEM cell stack, the appropriate system 

cost breakdown, according to Bertuccioli, et al. [150], is used. Comparable classifications found in 

other literature like Carmo et al. [149], differ slightly in the subdivisions used, but show similar shares 

for the stack part. The cost breakdown used for the component structure is shown in Figure 8-2.  

 
Figure 8-2: Cost breakdown for PEM electrolysis system (2014) including cost share for overall cell stack costs 

(source: Bertuccioli, et al. [150]) 

The data on these costs can also be assimilated with the data found in a review study carried out by 

Saba et al. [154], thereby comparing cost studies from the past 30 years for the observed timeframe. 

With all this data, the learning curve for PEMEC is evaluated based on an assumptive amount of 

produced units. The calculated curve is shown in Figure 8-3. 

 
Figure 8-3: Calculated learning curve for PEM cell stack 

As it can be seen in Figure 8-3, the learning curve determined with the component-based approach 

slightly differs from the curve gained by the conventional approach, by using a single learning rate 
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for the whole module (in that case, a learning rate of 18% was used, as it is found in relevant refer-

ences for electrolysis cells like [46], [83], and [53]). Furthermore, the learning curve is not entirely 

linear in the log-log graph (logarithmic scale on both axis), as it is the case for a single learning rate. 

This development of the overall learning rate as a function of cumulative production volumes is 

shown in Figure 8-4. 

 
Figure 8-4: Development of the learning rate as a function of cumulative production volume for PEM cell stacks 

This can be explained by the circumstance wherein components with high individual learning rates, 

which often come hand in hand with high-cost shares, reduce faster in costs through technological 

learning when compared to components with low rates. As a result, their shares on the overall costs 

decrease, together with their influence on the modules’ overall learning rate. By this, the learning 

curve gains some flexibility when compared to the common theory of technological learning. Even-

tually, this experience can also be applied to explain some observed decreases in experience rates 

in different stages of technology readiness, which are hard to determine when using common meth-

ods. 

As mentioned, defining learning effects on a component basis leads to variance in cost structures 

as a function of the cumulative number of produced units for the investigated module. Figure 8-5 

shows the development for the PEMEC from the initial structure to the values for a cumulative num-

ber of produced units of a factor 1,000 (1,000 times more units produced/installed when compared 

to the initial amount). 
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Figure 8-5: Development of the cost structure of PEM electrolysis cells for different cumulative amounts of pro-
duced units (left: initial; right: factor 1,000) 

This observation does not only have influences on the overall learning curve but also shows an 

interesting advantage of the described method. By subdividing the modules into components and 

evaluating their learning curves individually, this approach allows a detailed assessment about which 

components will be price-dominant at a certain point of technology maturity. This could further allow 

evaluations like how long it will be reasonable to invest and research for improving technology-critical 

parts instead of aiming at cost reductions on standard parts. 

The results calculated above only describe the development of the cell costs related to the electric 

power input. To determine the costs per generated product gas, it would be necessary to define an 

appropriate stack efficiency. As this conversion efficiency will not be constant over time but will im-

prove by technological learning, these additional learning effects must be considered when investi-

gating that topic further. 

8.1.2 Transferring results to alkaline electrolysis cells 

While alkaline electrolysis cells (AEC) use the same input (water and electric current) and produce 

the same output (hydrogen and oxygen) flows as PEM electrolysis cells, their technological compo-

sition is rather different. Despite that, some individual parts of the alkaline cell share similar functions 

and are built analogically at a component level when compared to the PEMEC. Considering that, 

based on the described methods, it would allow a feasible estimation of learning rates for the AEC. 

An appropriate component structure is again provided in the study by Bertuccioli, et al. [150], as 

shown in Figure 8-6. The experience rates, which are summarized in Table 8-4, are chosen by com-

ponent-wise comparison to similar parts inside the PEMEC. Therefore, standard mechanical parts 

are again defined by a learning rate of 𝑙𝑟 = 0.05, while peripheral, technology specific components 

use a rate of 𝑙𝑟 = 0.08. Technology-determining main parts like membranes or electrodes again use 

significantly higher rates.  
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Figure 8-6: Break down of alkaline electrolysis cell stack including initial (2014) cost share of the individual com-

ponents (source: Bertuccioli, et al. [150]) 

Table 8-4: Cost shares and learning rates chosen for PEM electrolysis cell analysis 

Component Initial cost share lr* pr** 

Structural Rings 15 % 5 % 0.950 

PTFE sealing 4 % 8 % 0.920 

Bipolar plates 7 % 12..22..25 % 0.780 

Pre electrode 8 % 12..22..25 % 0.780 

Anode 26 % 12..22..25 % 0.780 

Cathode 25 % 12..22..25 % 0.780 

Membrane 7 % 12..22..25 % 0.780 

Flanges 4 % 5 % 0.950 

Tie Rods 3 % 5 % 0.950 

* lr = learning rates used in calculations; bold values were effectively used if not stated differently 

** pr = “progress ratio” =(1 – lr) 

Sources: Initial cost shares based on Bertuccioli, et al. [150]; learning rates based on Tsuchiya et al. [49] 

and analysis of PEMEC, respectively 

 

While this assumption of the learning rate being applicable from PEM to alkaline electrolysis cells 

will again be feasible on an area-related basis, this will not be the case when relating costs to different 

physical values, such as nominal power, for most of the components. This is also explained due to 

the circumstance wherein a reduction in size often accompanies a reduction in material usage and 

therefore a reduction in material costs. 

To cope with this situation, the flexibility factor given by the power density, which is already intro-

duced as a “Learning Property” for the PEM cell, is being adapted accordingly to make it applicable 

for the characteristics of the AEC. The used values are again defined by the mid- and long-term 
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predictions given by the NOW study [72], as already shown in Table 8-3, together with iterative 

calculations. The parameters of the resulting “Learning Property” and the affected components can 

be found in Figure 8-5. 

Table 8-5: Characteristics of the used "Learning Properties" for AEC 

Learning 
Property 

Initial 
value 

lr* Influence 
exponent 

Influenced Components 

Power density 8,8 kWel/m² -5,5 % -1 

Structural Rings 

PTFE sealing 

Bipolar plates 

Pre electrode 

Anode 

Cathode 

Membrane 

Flanges 

Tie Rods 

* lr = learning rate 

 

The initial overall costs for the AEC stack are again defined by using the value evaluated from the 

literature (cf. section 5.1) on the alkaline technology of 1,100 €/kWel, while the available data range 

from 870 to 2,530 €/kWel. Schmidt et al. [83] provided similar values as references for the year 2016, 

generated in an expert elicitation study. As these values describe system costs, the cost breakdown, 

as shown in Figure 8-7 below, is used to determine the stack costs. 

 
Figure 8-7: Cost breakdown for alkaline electrolysis system (2014) including the cost share for overall cell stack 

costs (source: Bertuccioli, et al. [150]) 

The results generated based on those assumptions for alkaline electrolysis cells are illustrated in 

Figure 8-8 and Figure 8-9. The comparative curve in Figure 8-8 is again calculated by assuming the 
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conventional theory of technological learning with a constant experience rate of 𝑙𝑟 = 0.18, as it was 

already justified for the PEMEC in section 8.1.1.  

The Figure 8-9 reveals that the overall learning rate is generally a little higher when compared to the 

values calculated for the PEM electrolysis cell (cf. Figure 8-4). Even though the added-up cost shares 

of the “high-learning” main parts are on the same level for both technologies, the portion of the “low-

learning” standard parts is even higher for the AEC. This is due to the fact that the development of 

the power density (as a “Learning Property”) adds another learning effect, which, as per definition, 

is significantly higher for the alkaline cell when compared to the PEM. 

 
Figure 8-8: Calculated learning curve for alkaline electrolysis cell stack 

 

 
Figure 8-9: Development of the learning rate as a function of the cumulative production volume for alkaline elec-

trolysis cell stacks 
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During this study, there was an attempt to apply the presented approach to other electrolysis tech-

nologies such as SOEC. While this is affordable for PEM and alkaline cells, less-established tech-

nology implicates further difficulties. It emerged that the TRL of solid-oxide cells is rather low when 

compared to the ones investigated, and therefore it was not possible to define a clear and universally 

valid component or a cost structure. An analysis of the relevant literature, including commonly used 

materials (cf., [152], [155]), affirmed this conclusion. As a result, it can be concluded that even with 

the approach described in this study, reaching an appropriate degree of maturity is essential for a 

technology to allow a generalized assumption on its cost development. 

8.1.3 Estimations on solid oxide electrolysis cells 

While alkaline and PEM electrolyzers have been well-established over the last years for PtG appli-

cations, solid oxide cells (SOC) have come up as a promising alternative. SOECs are expected to 

reach high current efficiencies when compared to common low-temperature electrolysis due to the 

operation at elevated temperatures and appropriate integrated heat management, especially in com-

bination with exothermal methanation processes [156, 89]. Therefore, this technology is part of many 

recent research activities, and an investigation on SOEC in this study is reasonable. 

Until now, SOCs have been primarily used for fuel cell applications. However, the technology of SOC 

is expected to allow operation in both electrolysis and fuel cell modes, with the same cell configura-

tion. This is also confirmed by recent research [157, 158]. Thus, for the investigations on the learning 

effects of SOEC, mostly technology and cost data available for solid oxide fuel cells (SOFC) have 

been used. 

In this study, it was not possible to define a common configuration for SOEC, as cell configurations 

are very specific to the use case (e.g., steam electrolysis or co-electrolysis) and technology is in a 

very early development stage. Therefore, the cell stack was defined by a single component module 

inside the CoLLeCT resulting in a constant learning rate for the module. As a reference value, the 

results of a recent expert elicitation study [83] were used. The study reveals an experience rate of 

28% for SOEC stacks, but also shows a high uncertainty of ±16% due to lacking data. The develop-

ment of the power density—used as “Learning Property” for other technologies—was also neglected. 

To be consistent with the data for alkaline and PEM systems, the same system modules were used, 

thereby resulting in the following system cost share. As the base data, the values used by Giglio et 

al. [90] were used and expanded with a share of 15% to ensure that the “Gas Conditioning” is com-

parable with other systems (costs for “Enclosure,” “Transport and Placement,” and “Foundations” 

were summed up as “Balance of Plant”). 
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Figure 8-10: Cost breakdown for solid oxide electrolysis system including cost share for overall cell stack costs  

(based on: Giglio, et al. (2015) [90]) 

Since only a single component is used in the module for the SOEC stack, the “CoLLeCT” approach 

coincides with the conventional approach, assuming a constant learning rate, thereby resulting in a 

linear experience curve in the log-log graph (see Figure 8-11). 

 
Figure 8-11: Calculated learning curve for solid oxide electrolysis cell stack 

With the assumptions given above, it has to be stated that the investigations for SOEC only aim to 

give a very rough estimation of the technology. To make use of the benefits of the component-based 

learning curve model, a more specific assembly and cost structure for this application has to be 

identified and investigated. In the early stage of the development of this technology, this investigation 

will be essential to facilitate concrete implementations before being able to make relevant predic-

tions. 
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8.1.4 Comparison with the conventional approach 

To prove the quality of the component-based learning curve approach when compared to the con-

ventional theory with constant learning (per technology), the experience curves were also calculated 

for available historical data on costs of electrolysis cell stacks. Unfortunately, the amount of cost data 

available, especially together with data on the corresponding cumulative number of produced units 

(or nominal power), are quite limited. To provide updated information, the data disseminated by 

Schmidt et al. (paper: [53]; dataset: [159]) was used for reference. Figure 8-12 shows a comparison 

of the component-based (CoLLeCT) and conventional approaches fitting the curves to the available 

historical data points. 

The curve for the conventional approach was determined by fitting a common experience curve (cf. 

Eq. 1) to the given set of data points, resulting in a constant experience rate of 18.8%. A comparison 

of this rate to other available references in relevant literature, such as Schoots et al. [14] or Louwen, 

et al. [160], shows that this value seems reasonable. 

Concerning the component-based theory, the parameters for the AEC presented above were used. 

Though it is not explicitly stated which kind of technology the historical cost data stands for, it is 

assumed, from the given time frame and the general development of the water electrolysis technol-

ogies at that time, that the major part is about alkaline cells rather than the other types. 

 
Figure 8-12: Comparison of the component-based and the conventional approach fitting to available historical 

cost data (data source: Schmidt, et al. [159]) 

A comparison of both learning curves in Figure 8-12 shows that there are no significant differences. 

The coefficient of determination (R²) shows that these approaches are fitting (for the component-

based method, it is even slightly better), which leads to the assumption that the presented approach 

is at least not worse when compared to the common theory for the given data points. Certainly, the 

small amount of available data points does not allow a well-grounded statement about the goodness 

of fit. 

8.2 Electrolysis Plant System  

To evaluate cost reductions for PtG technologies, an observation of the overall system costs is often 

desired and reasonable. This implies that learning effects for peripheral plant parts, apart from the 

main technology, which is in this case, the electrolysis cell stack should also be considered. 
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The estimation of those learning effects entails some difficulties. While the model provides appropri-

ate capabilities on that level (cf. “System Level” in section 7.2.2), the determination of the needed 

input parameters is complicated. On the one hand, as those peripheral parts are usually not cost-

determining or their costs do not vary significantly, respectively, in the early stages of technology 

development, they are often out of the scope of long-term investigation in techno-economic studies. 

Therefore, appropriate data about learning rates is usually not available. On the other hand, the 

second main influencing factor, that is, the number of cumulative produced units for each “module” 

of the system, is of special interest. As the model includes functions to preclude spillover effects from 

other technologies by considering the reuses of each module within other systems, a full analysis of 

the appropriate production amounts is necessary to make full use of the benefits provided by the 

model. 

These circumstances must allow an assessment of whether the benefits derived from accurate cal-

culations are worth the effort invested on data acquisition; this aspect must be determined per use 

case whether some simplifications in the calculations are reasonable. In the present case of an 

electrolysis system, some simplifications were made, compensating unknown third-party usages for 

the peripheral modules by either estimating lower learning rates (despite “direct” dependency, the 

learning effects for the module are low; refer to Section 7.2.2.2 for definition of dependencies) or 

completely decoupling the module from system productions (“independent” or “constant” depend-

ency). 

8.2.1 Future demand for water electrolysis for hydrogen production 

Based on the evaluated potentials for renewable hydrogen for 2050 (cf. section 5), necessary annual 

production volumes to reach these targets have been estimated. This is done by using the so-called 

logistic functions for curves of annual production. As a reference for starting values, historical esti-

mations of cumulative electrolyzer production from relevant literature [83, 14] are used. For the three 

investigated scenarios (high, moderate, and low), the resulting electrolysis production curves (rated 

power) are shown in Figure 8-13 for yearly and cumulative values. 

 
Figure 8-13: Assumed cumulative and annual overall production of electrolysis systems (rated power) based on 

the evaluated hydrogen demand potentials for 2050 

For the estimation of the future production of individual electrolysis technologies (AEC, PEMEC, and 

SOEC), based on the evaluated production curves above, the following assumptions were made: 
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 Cumulative production of alkaline electrolysis stacks was assumed to match available data 

of about 20 GWel in 2014 (referring to [14, 159, 83]) 

 Cumulative production of PEMEC was estimated to be about 1 GWel and SOEC to be about 

0,1 GWel in 2014 (referring to [83]) 

 Variable shares of produced units for each technology were assumed, starting with 50% 

(AEC), 40% (PEMEC), and 10% (SOEC) for 2015, and ending with balanced shares in 2050 

(cf. Figure 8-14). 

 
Figure 8-14: Assumption on the development of electrolysis technology share 

 

8.2.2 System definition 

To achieve consistency and comparability between the investigated technologies, the electrolysis 

system was split into four main cost factors, as already described in the cell stack definitions: 

 Cell Stack 

 Power Electronics 

 Gas Conditioning 

 Balance of Plant 

The assumptions made for the use of the aforementioned four modules within the CoLLeCT-based 

calculation, including the number of sub-components and dependency on the production volumes 

(cf. section 7.2.2), are described in the following. 

8.2.2.1 Cell Stack 

The electrolysis cell stack is the core technology of the electrolysis and therefore the main driver for 

technological learning. This core technology for each of the three electrolysis technologies (AEC, 

PEMEC, and SOEC) is defined separately and described in detail in the previous section 8.1. As 

their learning effects are decoupled from each other through their definitions, they are directly de-

pendent on the cumulative production of each individual technology and therefore “direct” depend-

ency is used on CoLLeCT’s “System Level.” 

8.2.2.2 Power Electronics 

The second module includes power electronics, which is necessary for every electrolysis system. To 

reduce complexity, only one sub-component was defined, resulting in a single constant learning rate 
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for the module. Since learning curves are usually investigated for complete systems, technologies, 

or products, learning rates for individual system components lack available data. Therefore, the ob-

served learning effects for different manufacturing processes have to be used as a reference. Re-

ferring to the study by Strategos Inc. [161], which shows typical learning rates for repetitive electron-

ics manufacturing at 5%–10% and 15%–25% for electrical wiring, an average learning rate of 12% 

was chosen for power electronics in the investigated electrolysis systems. 

As power electronics is needed for all investigated electrolysis systems, and the use of power elec-

tronics between these systems is assumed to be comparable, there will be spillover effects on the 

technological learning across the different systems. To include these effects in our calculations, it 

was assumed that learning effects are not directly dependent on the cumulative production of the 

individual technology but more or less dependent on the overall production of electrolysis systems. 

Therefore, the dependency parameter for the power electronics module was set to “independent” by 

using the overall cumulative electrolysis production, as shown in Figure 8-13. 

8.2.2.3 Gas Conditioning 

The overall investment costs for product gas treatment in the electrolysis plant is covered in the gas 

conditioning module. Similar to the Power Electronics module, it contains a single sub-component 

with a constant learning rate. As this section mainly consists of purchased parts (e.g., compressors), 

electronics and electrics (e.g., controls and measurement and power supply), machining and assem-

bly and components, which are far beyond R&D, the learning rate is set relatively low at 7%, following 

[52] and [161]. 

Gas treatment for further processing does not only have to be done for hydrogen production by 

electrolysis but also for conventional ways of H2 generation like steam methane reforming (SMR). 

As a result, learning effects on this module will not only be influenced by the production of electro-

lyzer units but will also spillover from other forms of H2 generation. Particularly, cumulative produc-

tion and therefore learning that has happened in the past must be considered in the calculations. To 

take that into account, cumulative hydrogen production from 1990 to 2014, as shown in Figure 8-15, 

is used as a base value. This means that the gas conditioning module uses “independent” as the 

dependency parameter inside the CoLLeCT calculations by using cumulative processing of hydro-

gen from electrolysis on top of those conventional production values from the past. Figure 8-16 

shows the resulting curves for the three investigated PtG distribution scenarios (high, moderate, and 

low). 

 

Source: Brown (2014) [162] 
Figure 8-15: World captive hydrogen production 
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Figure 8-16: Assumed cumulative production capacity of hydrogen from 2015–2050 

8.2.2.4 Balance of Plant 

Costs of peripheral components and implementation tasks of the electrolysis system that are not 

covered by other modules are summed up in the Balance of Plant (BoP). As there is a wide variation 

in included sub-components between different implementations of electrolysis plants (even within 

the same technology), a valuable allocation of a cost structure for this module would have to be done 

individually for certain implementations in the considered case. To allow an assessment in this study, 

a reduction to a single sub-component with a constant learning rate was done. Referring to Strategos 

Inc. [161], a moderate learning rate of 13% was assumed, mostly a composition of purchased parts 

(12%–15%), machining (5%–10%), assembly (10%–20%), welding (10%), and comparable cost fac-

tors in a similar range. 

Since there is a high individuality per technology, especially for pressure levels and heat manage-

ment, spillover effects were neglected for this module. Hence, a “direct” dependency between the 

technological learning of BoP and the cumulative production of each individual electrolysis technol-

ogy was chosen for the calculations. 

Table 8-6 sums up the modules and assumptions used for the calculation of the technological learn-

ing potential for electrolysis systems based on AEC, PEMEC, and SOEC stacks. 

Table 8-6: Summary of calculation parameters for electrolysis system 

Module # components initial cost share dependency 

AEC PEMEC SOEC AEC PEMEC SOEC AEC PEMEC SOEC 

Cell Stack 91) 111) 1 
(lr=28%) 

50% 60% 22% direct 

Power Electronics 1 
(lr=12%) 

1 
(lr=12%) 

1 
(lr=12%) 

15% 15% 13% independent 

Gas Conditioning 1 
(lr=7%) 

1 
(lr=7%) 

1 
(lr=7%) 

15% 10% 15% independent 

Balance of Plant 1 
(lr=13%) 

1 
(lr=13%) 

1 
(lr=13%) 

20% 15% 50% direct 

1) variable learning rate calculated by CoLLeCT 
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8.3  Methanation System 

Alongside the electrolysis system, methanation comprises the second major capital costs for the 

implementation of a PtG plant producing SNG. While technological learning on PtG systems as a 

whole and electrolysis as a sub-technology have already been a topic of a few individual research 

studies, experience curves for methanation appliances are even harder to determine (cf. section 

4.2), as there is hardly any relevant literature available. An aggravating factor is that the development 

of methanation plants is still at a very early stage, and therefore no consistent and verifiable data 

about cost structures is publicly available (cf. [158, 159, 14, 160]). As a result, the approach for using 

the learning curve theory along with methanation technologies will only be possible at a coarse level 

(“System Level”). Additionally, the composition of the methanation reactor is very specific to the 

application, considering processing parameters (pressure, temperature, and catalyst carrier struc-

ture), and therefore it is difficult to estimate the needed cost structure. 

In the following sections, the configurations used to apply the CoLLeCT model to the methanation 

part of the PtG plant are described for catalytic and biological methanation. These estimations are 

mainly based on the data retrieved from the STORE&GO demo plant manufacturing as well as the 

reviewed literature data.  

8.3.1 Future demand for methanation applications for SNG production 

The amounts of annually produced methanation applications, valued as the rated power of SNG 

output (GWHHV), are estimated based on the evaluated potentials for SNG demand in 2050, as shown 

in section 5. For this purpose, logistic functions were used again as an assumption to describe the 

production volumes per year. There is hardly any literature data about cumulative capacity for 

methanation available. Thus, the compilation of current methanation projects given by [69] was used 

as a referende resulting in a starting value of about 33 GWSNG for the cumulative production for 2015. 

This includes applications for catalytic methanation of CO2 as well as CO, considering that both types 

show no significant difference in the main reactor concept. Figure 8-17 shows the resulting produc-

tion curves (rated power SNG output) for annual and cumulative values for the three investigated 

scenarios (high, moderate, and low). 

 
Figure 8-17: Assumed cumulative and annual overall production of methanation systems (rated power SNG out-

put) based on evaluated renewable SNG demand potentials for 2050 

For the subdivision of these overall production amounts into individual investigated methanation 

technologies—catalytic and biological—the following assumptions were made: 
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 The separation of actual technology shares for both methanation concepts shows some dif-

ficulties. If considering methanation technologies solely, biological methanation reactors are 

only marginal. Though, it has to be taken into account, that similar concepts are already 

widely used in biogas productions, which increases the base volume for learning effects. As 

a compromise, catalytic methanation was estimated to have a total share of 95% of cumula-

tive productions up to the year 2015, and biological methanation was presumed to be equiv-

alent to 5% in the same period. 

 The technology shares in annual production were assumed to start at 90% for catalytic 

methanation and 10% for biological methanation, reaching shares of 60% vs. 40% in 2050, 

following the curves in Figure 8-18. 

 
Figure 8-18: Assumption on the development of methanation technology share 

 

8.3.2 System definition “catalytic” 

The catalytic methanation system was split into the following four main subdivisions (modules) rep-

resenting the main cost structure: 

 Methanation Reactor 

 Electric Installation and Control System (ICT) 

 Gas Conditioning 

 Balance of Plant 

The compositions and parameters of these modules used in the CoLLeCT calculation model are 

described in the following section. This includes cost shares and the number of sub-components and 

their dependencies on the production volume (according to section 7.2.2). The cost breakdown and 

allocation to the modules stated above was done in reference to the available cost data of the 

STORE&GO demonstration plants. 

8.3.2.1 Methanation Reactor 

The methanation reactor represents the core component of the methanation system, with the highest 

potential for technological improvements and cost reductions. For the catalytic methanation, this 

module is split into three sub-components provided with different learning rates. 
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The first component is given by the reactor itself, representing the reacting volume and structure for 

the methanation process. According to Rönsch et al. [69], different methanation concepts are usable, 

which can be roughly classified into fixed-bed, fluidized-bed, structured reactors, and slurry reactors. 

Due to this high bandwidth of technologies, the reactor is not further classified in our investigations. 

To allow an estimation of learning rates for catalytic reactors, a literature review on comparable 

technologies and applications was performed (cf. section 4.2), without significant results. Therefore, 

to predict future cost reductions for methanation appliances, only very rough estimates on learning 

rates will be possible. While the steam methane reforming shows learning rates of 11%±6%, Anan-

darajah et al. [163] suggest using learning rates from 15% to 20% for novel technologies in general. 

As a result, a moderate learning rate of 15% was assumed as a starting value for the methanation 

reactor.  

While the methanation reactor contains the carrier material for the catalytic material, the catalyst 

itself is treated independently within our model. This component can be roughly compared to the 

catalyst used in the definitions for the electrolysis cells, at least in terms of learning rates. While the 

catalyst material itself is different (methanation uses Ni-catalysts primarily), cost reduction effects 

will be similar, assuming, as it was worked out for electrolyzer catalysts, that material costs will stay 

constant, while only coating thickness is reduced (cf. section 8.1). In this case, the same learning 

rate of 8%, which provided good results for electrolysis cells, can be used for the methanation cata-

lyst as well. 

The third major component that is essential in the methanation reactor is heat management. As the 

methanation process is highly exothermal, an operation at a controlled temperature is mandatory for 

the functioning process and appropriate methane yield. As heat management is highly dependent 

on the operation mode used in the individual reactors [69] and therefore tightly integrated with the 

reactor concept itself, a learning rate of 15% was assumed in this case, referring to the values used 

for the reactor component and provided by Anandarajah et al. [163] for developing technologies. 

Table 8-7 shows an overview of the values used for the calculations elaborated on the catalytic 

methanation reactor. Initial cost shares are based on data retrieved from the STORE&GO demon-

stration plants. 

Table 8-7: Cost shares and learning rates chosen for catalytic methanation reactor 

Component Initial cost 
share 

lr* pr** 

Reactor 57% 15% 0.850 

Catalyst 26% 8% 0.920 

Heat Management 17% 15% 0.850 

* lr = learning rates used in calculations 

** pr = „progress ratio“ = (1 – lr) 

 

Since the methanation reactor, as a module, represents the main technological part of the complete 

methanation system associated with technological improvement, the technological learning effects 

will be directly coupled with production amounts of the catalytic methanation technology. This is 

considered with a “direct” dependency within the CoLLeCT calculation module. 
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8.3.2.2 Electric Installation and Control System (ICT) 

This module includes electrical wiring as well as the implementation of necessary measurement and 

control systems for the operation and monitoring of the methanation plant. In order to reduce com-

plexity in the calculation model, this module was defined with only a single sub-component and 

hence a single, constant learning rate. A comparison of the parts allocated to this module to typical 

representative learning rates given by Strategos Inc. [161] shows that the values for repetitive elec-

tronics (5%-10%) and electrical wiring (15%-25%) both are reasonable. Relating to the values used 

for “power electronics” in the electrolysis system (cf. section 8.2.2.2), a central learning rate of 12% 

was assumed for the calculations. 

Since the electric connection and interconnection and the measurement and control systems are 

needed in catalytic and biological methanation systems in the same manner, spillover effects from 

one technology to the other must be expected in this module. Therefore, it was assumed that the 

technological learning effects covered by this module are more or less dependent on the distribution 

of methanation systems as a whole and not directly dependent on the production of each individual 

technology. However, this can still be an underestimation because many purchased parts used for 

measurement and control purposes for gas processing and heat management are widely used in 

different sectors, resulting in additional cost reduction effects on those elements, which cannot be 

considered in this investigation.  

8.3.2.3 Gas Conditioning 

The treatment of input (H2, CO, and CO2) and output (SNG) gasses of the methanation process is a 

necessary processing step to ensure relevant operating conditions—in terms of eliminating un-

wanted gas impurities and pressures—and to ensure that the requirements for the product gas, such 

as for feed-in to the gas grid, are met. Compared to how this module was implemented for the elec-

trolysis system (cf. section 8.2.2.3), it will be treated the same way for methanation in terms of learn-

ing rates, by using a constant (single sub-component) rate of 7%. This seems reasonable because 

devices, such as compressors, and implementation works are quite transferable between those two 

technologies, mostly differing in gas compositions and amounts. 

Presuming that conditioning of the input gases is handled separately, such as hydrogen treatment 

is already addressed in the appropriate electrolysis unit, this module mainly deals with the synthetic 

natural gas (SNG) produced by the methanation unit. Since the properties of this gas match those 

of fossil natural gas, comparable equipment is expected to be used for both fossil and renewable 

gas treatment. Therefore, a major part of technological learning can be attributed to the processing 

of natural gas (fossil and synthetic) in the future as well as in the past. To take this into account, the 

historical and future trends of natural gas processing8 were investigated (cf. Figure 8-19). For the 

consideration of learning effects, including technological learning that already happened in the past, 

this cumulative amount of gas processing (with the exclusion of capacity reductions) was used as 

production time series for gas conditioning in methanation plants, and therefore was “independent” 

of the direct productions of the methanation unit. 

                                                
 
8 Remark: In this context, natural gas includes fossil as well as synthetic (green) resources. Therefore, the 
estimated future demands are expected to be in large parts (or completely) be covered by SNG from renewable 
sources to reach climate goals for 2050. 



D7.5 Report on experience curves and economies of scale Page 92 of 131 

 

  
Sources: https://ourworldindata.org/fossil-fuels [164] & https://www.statista.com [165] 

Figure 8-19: Worldwide annual processing capacity of natural gas from 1900-2050  
(gray: reductions in capacities excluded) 

 

8.3.2.4 Balance of Plant 

By analyzing the data on costs available from the STORE&GO demo plants, it can be seen that a 

major share of the overall plant costs is driven by peripheral components and engineering that are 

not specific to the technology. Hence, methanation systems, as some kind of chemical plants, require 

individual engineering, planning, and equipment; however, in reality, these systems lack standardi-

zations between different implementations. Therefore, a detailed analysis of the included sub-com-

ponents and their specific experience curves would not be feasible in a harmonized way in this study. 

Therefore, all these peripheral cost factors are summed up in the Balance of Plant that is imple-

mented as a single component module in the CoLLeCT model. In reference to the Balance of Plant 

module of the electrolysis system (cf. section 8.2.2.4), the same moderate learning rate of 13% was 

assumed, keeping in mind the higher significance due to substantially higher share on total system 

costs (47% for catalytic methanation). 

Due to the high individuality of non-standardized methanation facilities, which is also dependent on 

boundary conditions like further processing of the product gas, spillover effects from other technolo-

gies on the Balance of Plant module were neglected. Consequently, the experience driving the cu-

mulative production volume was assumed to be directly dependent on distribution of the technology 

itself, setting the parameter to “direct” in the calculation model. 

8.3.3 System definition “biological” 

As a counterpart to the catalytic methanation process, biological methanation is another way to gen-

erate SNG from hydrogen and CO/CO2. While the process is quite similar to biogas production by 

the fermentation of biomass, the actual usage as part of a PtG plant is marginal when compared to 

the chemical conversion. According to Götz et al. [103], biological methanation is only an option for 

small plant sizes due to the requirement of large specific reactor volumes and fewer possibilities for 

the waste heat utilization (as a result of lower operating temperatures).  

As a result, information about the structure of investment costs for biological methanation plants is 

rather rare in relevant literature. To stay consistent with the other systems in this study, especially 

with catalytic methanation, the CoLLeCT modules were implemented in the same way as follows: 
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 Electric Installation and Control System (ICT) 

 Gas Conditioning 

 Balance of Plant 

Compared to the catalytic system, this composition only differs by the modules’ shares in the overall 

system costs and the sub-level definition of the methanation reactor, which is described in the fol-

lowing section. Due to the lack of detailed cost data, which is still not available at the appropriate 

STORE&GO demonstration plants, the subdivision of costs into those modules was done by referring 

to the available data for catalytic facilities, excluding the costs for the catalyst. Therefore, the calcu-

lations done for the technological learning on biological methanation plants include high uncertainties 

that must be considered when interpreting the results. However, they can still give an idea about 

potential cost reductions through technology distribution.  

8.3.3.1 Methanation Reactor 

The CoLLeCT module for the biological methanation reactor basically consists of two components—

the reactor, representing the reaction volume for the fermentation process, and heat management 

to handle thermal operating conditions. Compared to the catalytic model, only the component for the 

catalyst was removed, resulting in an adjustment of cost shares of the other two components, as 

shown in Table 8-8. In the absence of other significant data, the aforementioned components were 

assumed to show the same learning rates (15% both) as defined for their catalytic counterparts. 

Even though biological methanation reactors are technologically related to biogas production by fer-

mentation, spillover effects from these installations were neglected. Therefore, the learning effects 

are coupled to the specific production volumes of the technology itself by a “direct” dependency. 

Table 8-8: Cost shares and learning rates chosen for biological methanation reactor 

Component Initial cost 
share 

lr* pr** 

Reactor 77% 15% 0.850 

Heat Management 23% 15% 0.850 

* lr = learning rates used in calculations 

** pr = „progress ratio“ = (1 – lr) 

 

8.3.3.2 Electric Installation and Control System (ICT), Gas Conditioning, and Balance of 

Plant 

The other three modules implemented are assumed to be quite similar for both catalytic and biolog-

ical methanation in their compositions and operational functions. Hence, the assumptions made and 

parameters set for catalytic methanation systems have been defined the same way for the biological 

counterpart by learning rates and production volume dependencies. Of course, their shares on over-

all system costs are different. 

Table 8-9 sums up the modules and assumptions used for the calculation of the technological learn-

ing potential for catalytic and biological methanation systems. The initial cost shares are elaborated 

in reference to the data available from STORE&GO demonstration plants for catalytic methanation; 

subsequently, these cost shares are transferred to biological methanation by considering the omitted 

catalyst material. 
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Table 8-9: Summary of calculation parameters for electrolysis system 

Module # components initial cost share dependency 

catalytic biological Catalytic biological catalytic biological 

Methanation Reactor 31) 21) 21% 17% direct 

Electric Installation & 
Control System (ICT) 

1 
(lr=12%) 

1 
(lr=12%) 

20% 21% independent 

Gas Conditioning 1 
(lr=7%) 

1 
(lr=7%) 

12% 13% independent 

Balance of Plant 1 
(lr=13%) 

1 
(lr=13%) 

47% 49% direct 

1) variable learning rate calculated by CoLLeCT 
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9 Potential for cost reductions through technological learning 

Unless otherwise mentioned, cost predictions for the PtG technology in this deliverable are stated 

as real costs (reference year 2017, €2017). This means that the inflationary effects that are antici-

pated and will lead to rising nominal costs have not been considered. Additionally, no significant 

changes in technology, such as an implementation of additional functions, control elements and 

safety devices or efficiency improvements, have been taken into account for calculating the future 

investment costs. 

In the following sections, the results from calculations on the technological learning on PtG systems 

are shown. Sections 9.1 and 9.2 show the results based on the assumptions and definitions de-

scribed in the previous chapter 8. Section 9.3 deals with the sensitivity of the used models to a 

variation of their parameters. Unlike the calculated real costs (year 2017) in this deliverable, chapter 

9.4 examines the evolution of nominal prices by considering inflation. 

While common PtG systems, especially those investigated in STORE&GO, usually consist of elec-

trolysis and methanation, the two systems were evaluated separately to allow detailed investigations 

and reduce the number of combinations. Of course, overall PtG plant investment costs, for each 

combination of electrolysis and methanation technology, can simply be calculated by summing up 

the individual system costs. 

9.1 Cost predictions for electrolysis systems 

The graphs given below show the calculated experience curves for the PEM (Figure 9-1 and Figure 

9-3), alkaline (Figure 9-3), and solid oxide (Figure 9-4) electrolysis systems, as defined in section 5. 

The curves are shown for all the three scenarios of electrolysis deployment defined in sections 5 and 

8.2.1. The results are summed up in Table 9-1: 

Table 9-1: Summary of the calculated cost reduction potential for 5 MWel electrolysis systems 

Electrolysis 
system 

Calculated costs [€2017/kWel] 

initial 
(2017) 

2020 2030 2050 

PEMEC  1,200   971 – 973   522 - 532   265 – 303  

AEC  1,100   1,058 – 1,059   754 - 767   408 – 464  

SOEC  2,500   1,850 – 2,100   1,031 – 1,266   560 – 751  

 

The cost reduction potential of PEMEC systems shows that the underlying scenario for future de-

ployments of PtG only has a marginal influence on the resulting investment costs for high production 

volumes. The resulting costs for 2050 are in a range of 270–300 €2017/kWel. This can be explained 

by the resulting development of the systems’ overall learning rate, as shown in Figure 9-2. The 

learning rate decreases at an accelerated pace with increasing production volumes in the beginning, 

whereas this effect reduces for higher cumulative volumes. Conversely, the experience rate of the 

alkaline system is more harmonized over the whole period. This effect is supported by the assumed 

development of the technology shares defined in Figure 8-14, through which the production capaci-

ties for PEMEC can grow at a rapid pace in the near future. 
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Figure 9-1: Investment cost development for PEM electrolysis systems (rated power 5 MW) depending on their 

potential future production volumes 

 
Figure 9-2: Learning rate development for PEMEC and AEC systems depending on their potential future produc-

tion volumes 

AEC Systems show lower potential for cost reductions when compared to the other investigated 

electrolysis technologies. With a calculated range of 410–470 €2017/kWel, the costs are expected to 

be even significantly higher than stated for PEMEC systems. Besides the lower overall learning rate, 

this can be explained by the substantially higher starting value of cumulative productions, which 

means that significant learning effects have already happened in the past. 
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Figure 9-3: Investment cost development for alkaline electrolysis systems (rated power 5 MW) depending on 

their potential future production volumes 

The results calculated for SOEC show highest cost reduction potential of all the three investigated 

electrolysis technologies. This follows from the high learning rate that was defined for the SOEC, 

based on relevant literature and compared to AEC and PEMEC a significant lower cumulative pro-

duction volume as an initial value. By taking the relatively high uncertainty for this value of ±16 per-

centage points into account (cf. [83]), the bandwidth of expected future costs can be significantly 

higher, as it can be seen in Figure 9-5. This would primarily affect the upper boundary as module 

costs for the cell stack itself are already extremely low due to the high base value for the learning 

rate, which would further increase the gain through additional cost reductions in the long term. Es-

pecially, for this technology, further investigations on cost structure and experience rates are neces-

sary to allow reasonable estimations on future investment costs. 

 
Figure 9-4: Investment cost development for solid oxide electrolysis systems (rated power 5 MW) depending on 

their potential future production volumes 



D7.5 Report on experience curves and economies of scale Page 98 of 131 

 

 
Figure 9-5: Influence of learning rate uncertainty for solid oxide electrolysis cell (LR=28%±16%) 

 

9.2 Cost predictions for methanation systems 

This section analyzes the results calculated for the methanation part of the PtG plants. The resulting 

ranges of the investment cost (high and low deployment scenarios) are summed up in Table 9-2 for 

the years 2020, 2030, and 2050: 

Table 9-2: Summary of calculated cost reduction potential for 5 MWSNG-output methanation systems 

Methanation 
system 

Calculated costs [€2017/kWSNG] 

initial 
(2017) 

2020 2030 2050 

Catalytic   600    579 – 579    437 – 444    270 – 295  

Biological   600    551 – 552   357 – 363   213 – 232 

 

The experience curves for catalytic (Figure 9-6) and biological (Figure 9-7) methanation systems 

show similar trends for cost reductions. The investment costs for biological methanation reach lower 

levels in the long-term. This is mainly driven by the aspect that the relative increase in cumulative 

produced units (or rather rated power) has to be substantially higher when compared to the catalytic 

application to reach presumed technology production share levels (from 5% initially to 40% in 2050), 

as defined in Figure 8-18. Contrary to the catalytic reactor, another factor is that biological methana-

tion misses the catalyst component, wherein this component is implemented with a relatively low 

learning rate (8%) when compared to other components in the reactor module. 

Despite this, investment costs for both technologies are on a similar level throughout the investigated 

time frame, reaching values of 270–300 €2017/kWSNG (catalytic) and 210–230 €2017/kWSNG in 2050 

under the presumed conditions. 
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Figure 9-6: Investment cost development for catalytic methanation systems (5 MW SNG output) depending on 

their potential future production volumes 

 
Figure 9-7: Investment cost development for biological methanation systems (5 MW SNG output) depending on 

their potential future production volumes 

Since assumptions made for biological methanation (cf. section 8.3.3) include high uncertainties, the 

resulting overall learning rate calculated by the model was examined in detail. As it can be seen in 

the trend in Figure 9-8, it stays in a small range of about 11.5%–12.5% over the investigated period. 

To assess this value, the process of biogas production by the fermentation of biomass was taken as 

a comparable technological conversion process due to missing reference values for biological 

methanation. Junginger et al. [166] investigated the technological learning of bioenergy systems in 

2006, finding an experience rate of 12% on the investment costs per daily digester capacity. Even 

though this value is not significant (R²=0.69), the results for the biological methanation are exactly in 

that range (assuming a continuous production and static efficiencies throughout the investigated 

period). Therefore, the evaluations can at least serve as guiding values for forthcoming investiga-

tions. 
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Figure 9-8: Learning rate development for biological methanation systems depending on their potential future 

production volumes 

9.3 Sensitivity to parameter variation 

Since the models defined to estimate learning curve effects for PtG technologies imply uncertainties 

in some degree—in addition to the uncertainties given by the presumed potentials for future deploy-

ments of the individual technologies—this chapter is used to evaluate the influence of the variation 

of model parameters on the predicted cost reduction potentials. As this is primarily meant to be a 

qualitative analysis, this is done for selected models only to keep the number of variations low. 

Therefore, if not stated differently, PEMEC electrolysis and catalytic methanation are used for sen-

sitivity analysis as they are the most verified systems of each sub-unit of the PtG plant. Additionally, 

the considerations were limited to the two “high” PtG deployment scenarios; however, it can be easily 

transferred to the other scenarios. 

9.3.1 Considering replacements 

While cumulative production volumes are thoroughly investigated and include spillover effects by 

considering past and future processing demands for hydrogen and natural gas, the calculated vol-

umes do not include necessary replacements of those units at end of lifetime. Hence, following as-

sumptions were made: 

 PEM electrolysis cells are expected to operate for 10 years, on average, for continuous op-

eration (95% yearly work load), based on lifetime trends stated by Bertuccioli et al. [73] 

 Electrolysis system as a whole is set with a lifetime of 25 years, based on relevant literature 

[73] 

 Natural gas (fossil and SNG) processing units are expected to run on an average of 25 years 

before being replaced 

 Catalytic methanation reactors are presumed to reach an average lifetime of 10 years 

 Since different lifetimes for PEMEC stack and system were defined, the stack production is 

now decoupled from the system production and dependency parameter is set to “independ-

ent” accordingly. This also applies to the reactor module in the methanation system. 
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Even though the total cumulative production volumes of the implemented modules increase signifi-

cantly, considering replacements due to limited lifetimes, the observed impact on the learning curves 

is negligible for both electrolysis and methanation systems, as shown in Figure 9-9 (electrolysis) and 

Figure 9-10 (methanation). This is mainly caused by the long lifetimes in relation to the observation 

period. 

 
Figure 9-9: Influence of component replacement on the experience curve for PEM electrolysis systems 

 

 
Figure 9-10: Influence of component replacement on the experience curve for catalytic methanation systems 

9.3.2 Learning rate variation 

Since learning rates presumed for peripheral components could not be verified by comparing them 

with data in the existing literature, they carry a high potential for uncertainties. To evaluate their 

influence on the overall learning curve, they have been varied by ±25% off their base values, as 

defined in Section 5 in the sensitivity analysis. As already mentioned, only peripheral components 

are affected, including the following: 
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 Electrolysis: 

o Power Electronics 

o Gas Conditioning 

o Balance of Plant 

 Methanation: 

o Electric Installation and Control System (ICT) 

o Gas Conditioning 

o Balance of Plant 

For the PEM electrolysis, the observed influence is relatively low, considering the high underlying 

production volumes. By increasing the learning rates by +25%, the calculated costs for 2050 would 

decrease by about 13%, whereas a reduction of learning effects would lead to an increase in costs 

by 17% when compared to the base case. A variation by ±50% would have a significantly higher 

effect, influencing the outcome by -23% or +38%, respectively.  

 
Figure 9-11: Influence of learning rate variation of peripheral components for PEM electrolysis systems 

For the catalytic methanation system, the effects are almost comparable to the results above, influ-

encing costs by -14% and +18%, respectively. This is an interesting behavior as the peripheral com-

ponents take a significantly higher share on the total costs of the whole system when compared to 

the PEM electrolysis. Therefore, the impact of their learning rates was expected to be higher. This 

behavior is more observable at higher variations, such as by ±50%, which shows an impact of -25% 

or rather +42%. 



D7.5 Report on experience curves and economies of scale Page 103 of 131 

 

 
Figure 9-12: Influence of learning rate variation of peripheral components for catalytic methanation systems 

9.3.3 Variation of technology share 

Since only assumptions can be made for the technology shares in future production volumes of PtG 

systems, the influence of this aspect on the experience curves has also been investigated as part of 

the sensitivity analysis. Therefore, the technology shares for electrolysis have been adapted to reach 

about 40% / 45% / 15% (AEC / PEMEC / SOEC) in 2050, as illustrated in Figure 9-13. The resulting 

experience curves for the investigated electrolysis systems in Figure 9-14 shows that the influence, 

when compared to the base case (cf. Figure 8-14), is negligible, even if the technology share is 

reduced by more than 50%, as it is the case for SOEC. 

 
Figure 9-13: Adapted technology shares for electrolysis systems 
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Figure 9-14: Influence of technology share variation on learning curves for electrolysis systems 

The same analysis is also done for methanation on the basis of a significant variation in the technol-

ogy shares from 75% / 25% (catalytic / biological; shown in Figure 9-15). The results in Figure 9-16 

show that the effect on the experience curve is marginal, which means that the errors on the calcu-

lated results indicated by these parameters are low. 

 
Figure 9-15: Adapted technology shares for methanation systems 
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Figure 9-16: Influence of technology share variation on learning curves for methanation systems 

9.4 Cost predictions with nominal prices 

When comparing monetary amounts or costs at different times, the inflation—the change in the gen-

eral price level over time—must be considered. The inflation rate represents the percentage that 

indicates the change in the general price level in an economy when compared to the previous year. 

In the European Union, the inflation is measured with the harmonized index of consumer prices 

(HICP). The European annual inflation was fluctuating in the last 10 years between approximately -

0.5% and 4% and was, on average, about 2 %, see Figure 9-17. It must be noted that, in chemical 

engineering, it is also quite common to use a construction price index (e.g., ProcessNet Chemiean-

lagenindex Deutschland PCD) for calculating investment costs. 

 
Figure 9-17: Euro area annual inflation and its main components (%) from January 2008 to July 2018 [167] 

In this context, also the price development of the materials used for the production of the components 

must be briefly discussed. In general, the prices of materials will not decline but rather increase in 

the future, when considering the nominal price developments and thus taking into account the con-

sumer price index. However, the analyzes in the report regarding experience curves and economies 
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of scale refer to real price developments, which does not take into account global market price in-

creases (for example, oil price fluctuations or the normally controlled volatilities of central banks over 

their interest rate policy). Certainly, the real prices of some materials (such as platinum, lithium) will 

potentially increase in the future, especially if they are subject to a foreseeable rapid shortage, but 

In the case of a rapid development of new mining areas in a global context, the real prices might 

also decrease. 

With regard to labor costs, it should be noted that the development of labor costs is not itself a 

relevant aspect of technological learning. Rather, reducing labor costs per produced unit is respon-

sible for the learning curve effects through increased productivity (increased efficiency due to work 

experience) and changing manufacturing processes. However, it should also be noted in a global 

context, that the future demand for PtG products requires the production of enormous quantities of 

PtG plants and thus new production regions must be opened in the coming decades, whereby some 

of them have much lower labor costs than for example Germany. 

In the following figures, the development of the specific investment costs of electrolyzers and 

methanation units until 2050 for real costs (the reference year 2017, €2017) and the nominal costs 

(assumed inflation 1 % and 2 %) are shown. The specific investment costs (real cost, €2017) are taken 

from the cost predictions in chapter 9.1 for different electrolyzer systems with 5 MW, and chapter 9.2 

for methanation units with 5 MW SNG-output power. 

 
Figure 9-18: Development of specific investment costs of electrolyzers until 2050 for real costs (€2017) and nomi-

nal costs (inflation 1 % and 2 %) 
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Figure 9-19: Development of specific investment costs of methanation units until 2050 real costs (€2017) and 

nominal costs (inflation 1 % and 2 %) 

The nominal costs in the year 2050 are about 40% higher (inflation rate 1%) as real costs (€2017). If 

the inflation rate is assumed to be 2%, then the nominal costs would be about 90% higher as real 

costs. This means that, depending upon the inflation rate in the year 2050, up to 90% higher costs, 

when compared to 2017 values, must be expected to obtain the same electrolyzer or methanation 

system. However, the cost reduction due to learning curve effects is more pronounced than the 

general price increase (inflation) and counteracts the inflation, resulting in a reduction in nominal 

costs for components of the PtG system. 

Additionally, no significant change in technology, such as the implementation of additional functions, 

was taken into account for calculating the future investment costs. If additional functions are consid-

ered, this would lead to an increase in real costs, since it is no longer the reference plant from 2017, 

but a further developed plant with additional functions. Therefore, the cost reduction due to learning 

curve effects may be offset by the implementation of additional features (and thus additional costs), 

and the real cost of the PtG may only slightly decrease, remain the same, or even increase over 

time. 
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10  Conclusions 

The use of experience curves is an important measure to evaluate potential future production costs 

for emerging technologies. Especially in terms of the transition of the global energy system to re-

newable energy sources, the learning curve theory can help to estimate the learning investment, 

which is necessary for renewables to be competitive with incumbent technologies. Furthermore, this 

allows recommendations on regulatory frameworks as a driving factor for the enforcement of novel 

technologies. The elaboration of this deliverable D7.5 “Report on experience curves and economies 

of scale” shows the potential effects of the technological learning on the future investment costs of 

PtG technologies available and researched today.  

In general, the formal concept of experience curves describes the decline of real costs by a con-

stant percentage (learning rate) for every cumulative doubling of its produced volume and therefore 

represents a relationship between the costs of a product and the experience, expressed in cumula-

tive production of that product. Also the term economies of scale in this deliverable refers solely to 

the effect of real cost reductions through an increase of the production volume and not to cost 

reductions in consequence of an increase in size in form of upscaling (e.g. of nominal power). 

Since common approaches for the estimation of learning effects, which define a single learning rate 

for a certain technology, require an observation of the production cost development over several 

magnitudes of cumulative production volumes, they are obviously unsuitable for emerging technol-

ogies, which have not yet reached a certain market penetration. Additionally, an intense literature 

review, which was performed on various technologies established in the energy sector, revealed a 

lack of comparison of experience curves between similar technologies in a macroscopic manner.  

The approach in this deliverable to investigate the effects of technological learning at a component 

or production process level allows circumventing the difficulties mentioned above. It provides possi-

bilities to incorporate experiences on direct production processes, while the low-level view enables 

interchangeability between different products and technologies with minimal adaptions. Furthermore, 

the stiffness of the learning curve following the conventional theory of constant learning rates at a 

macro level suspends the possibility of allowing an easier adaptation of the learning curve to the 

various stages of technology readiness. 

However, in order to use the advantages of the CoLLeCT model, a fundamental knowledge on the 

investigated technologies, and thus a general study on their characteristics, is necessary to reveal 

the relevant cost structures and incorporated materials and processes. While this task was quite 

successful for alkaline and PEM electrolysis cells, the results have shown that further improvements 

will be needed, based on the data gathered for SOEC and methanation reactors. This can be han-

dled either by a more detailed analysis of individual applications or by a harmonization of the tech-

nological structure of those devices. Following the former approach allows assessments in the early 

R&D stages but requires a high adaptation to an individual application; however, the latter one be-

comes potentially self-fulfilling to a certain extent by increasing the technology readiness. 

Alongside the experience rate itself, an increase in the cumulative production volumes is the driving 

parameter for cost reductions by technological learning. Although high-cost reductions primarily en-

courage decisions on future investments in certain technologies, these cost reductions cannot be 

achieved without early investments (=learning investment). To propel renewable energy technolo-

gies to an extent where they are competitive with incumbent fossil counterparts, an enforcement of 

such early investments would be a key factor. The estimated potentials for PtG products (hydrogen 

and SNG), which are elaborated in this deliverable, assume different amounts of renewable energy 

sources, and thus appropriate amounts of renewable gases, to be reached in 2050. These amounts 

require a drastic increase in production of PtG components, which can only be achieved with a mass 
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production. This, however, call for a standardized and mass production-ready design of the compo-

nents. The resulting production curves to meet the estimated PtG demand provide a rough assess-

ment of the necessary efforts driven not only by manufacturers but also by regulatory frameworks. 

Unless otherwise mentioned, cost predictions for the PtG technology in this deliverable are stated 

as real costs (reference year 2017, €2017). This means that the inflationary effects that are antici-

pated and will lead to rising nominal costs have not been considered. Additionally, no significant 

changes in technology, such as an implementation of additional functions, control elements and 

safety devices or efficiency improvements, have been taken into account for calculating the future 

investment costs. 

The results for future investment costs summarized in Table 10-1 and shown in Figure 10-1 (elec-

trolysis) and Figure 10-2 (methanation) clarify that the determination of current costs has a significant 

influence on the quality of resulting forecasts. Therefore, the evaluation of initial system costs based 

on currently available technology is a mandatory task, preceding considerations on experience 

curves. The literature elaborated on this topic revealed broad bandwidths on available costs data for 

each investigated technology. While these differences in specific cost data complicate the determi-

nation of a starting value, they can be decreased by scaling the data to a common plant size for each 

technology. On the one hand, this step involving scaling is necessary to harmonize the calculation 

and clearly distinguish between cost reduction effects from technological learning and scale-up of 

plant implementations. On the other hand, it presumes additional knowledge on scaling effects for 

each investigated technology. The determination of those scaling effects is out of the scope of this 

deliverable and will be examined in detail as part of deliverable D7.7 “Future technology and techno-

economic optimization,” incorporating findings from equipment manufacturers and other project part-

ners. Therefore, the scaling factors assumed for the harmonization of the initial product cost used in 

this study are covered with a relevant uncertainty. 

Table 10-1: Summary of calculated cost reduction potential for 5 MWel electrolyzer and 5 MWSNG-output methana-
tion systems for the years 2030 and 2050 as well as the corresponding learning rates  

Comparing the results of the learning curve analysis, it can be concluded that the influence of the 

presumed production potential is rather low (e.g. if the cumulative produced volume of electrolyzers 

produced in 2050 would only reach half of the estimated quantity, the calculated costs would only 

increase by 12%; this would correspond to an increase from about 290 €/kW to 325 €/kW), especially 

when compared to the variations given for current technology costs (e.g. an deviation of plus 15% 

of the initial CAPEX of PEMEC’s would lead to an increase in 2050 of about 5%; this would corre-

spond to an increase from about 290 €/kW to 305 €/kW). Considering the sensitivity analysis that 

was performed to assess the influences of individual parameters of the calculation model, it becomes 

clear that the determination of learning rates for peripheral components of the PtG process (e.g., 

Technology  

(System) 

Calculated costs Calculated learning rates (avg.) 

initial 

(2017) 

2030 2050 initial 

(2017) 

2030 2050 

Electrolysis €/kWel % 

 

PEMEC 1,200 530 290 16,8 13,8 12,0 

AEC 1,100 760 440 13,1 12,3 11,0 

SOEC 2,500 1,090 610 15,6 12,4 11,2 

Methanation €/kWSNG % 

 

Catalytic 600 440 280 12,1 12,0 11,7 

Biological 600 360 220 12,3 12,1 11,7 
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gas conditioning or BoP) are a relevant factor in the future CAPEX development. Regarding the 

relevant literature on technological learning on PtG systems, this determination is often neglected 

because only the technological main parts (electrolysis stacks/methanation reactors) are investi-

gated. Therefore, the observation of learning effects on commonly used peripheral components is a 

relevant topic for upcoming studies, even though they are already highly established and cost re-

ductions on observed short-term are expected to be low, as emerging technologies can re-enable 

such mechanisms. 

 

Figure 10-1: Resulting learning curves for electrolysis systems with an uncertainty of ±15% on initial CAPEX 
(light-colored areas) 

 

 

 

Figure 10-2: Resulting learning curves for methanation systems with an uncertainty of ±15% on initial CAPEX 
(light-colored areas) 
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Despite all cost reductions in this deliverable derived from technological learning (resulting from e.g. 

fix cost degression, reduction of production time, increased specialization, variation in the used re-

sources, improvement of existing production technologies, and optimization of product design with 

respect to simplify the production process), it has to be kept in mind that the evaluated costs for the 

whole investigation period represent real costs referenced to the year 2017. This means that the 

inflationary effects that are anticipated and will lead to rising nominal costs have not been consid-

ered. Additionally, no significant changes in the technologies themselves (e.g., increasing efficien-

cies) or improvements in function or quality, which have no direct effect on the related output, have 

been considered. As all calculations are specific to the rated power, these improvements will influ-

ence the nominal cost reductions through technological learning. Summing up those effects will po-

tentially reduce the effects gained from technological learning or even result in increasing nominal 

costs in the long-term. 

The evaluation of learning curves for novel and established technologies requires the analysis of an 

adequate amount of historical cost data. Therefore, the availability of this data is mandatory to allow 

reasonable predictions on the future cost development. While the component-based approach of the 

CoLLeCT model tries to circumvent this limitation by comparing learning effects on similar sub-com-

ponents between independent technologies, the collection of base data is still unavoidable, even 

necessary in a more detailed view, especially in this early stage of model development. Neverthe-

less, the use of a component-based calculation model allows the incorporation of learning effects at 

a much lower level, wherein these can be determined more precisely and narrowed down to certain 

adaptations of the production process for single parts. This would allow the use of experience values 

for process improvements or the reduction of raw material costs from a unit to mass production, 

which is usually less obvious for a full technology view. 
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Appendix 

Appendix 1: Main components of the PtG-process 

The main parts of a PtG-technology are the electrolyzer, methanation unit, and CO2 capturing. The 

electrolyzer is the main and hence the most important component of a PtG system. 

Electrolyzer 

In an electrolyzer, water is split into hydrogen and oxygen through a redox reaction. The total reaction 

is [149]: 

 𝐻2𝑂 → 𝐻2 +
1

2
𝑂2 Eq. 1 

The partial reactions of the redox reaction are different, depending on the electrolyzer construction. 

Currently, there are three different types of electrolyzers available. All the three types are explained 

in the following sections. 

Alkaline electrolyzer (AEC) 

The AEC is widely used and established in industrial applications. It does not need limited materials, 

and hence it incurs a relatively low CAPEX. Owing to its low current and operating pressure, further 

research is focusing on improving these parameters [83]. The AEC is operated with temperatures 

between 80 and 90°C and ambient pressure. 

This type of electrolyzer uses caustic potash (KOH) as electrolyte, a nickel anode, and an activated 

cathode. The following partial reactions occur [168]: 

Anode reaction: 

 2 OH− →
1

2
 O2 + H2O + 2 e−  Eq 2 

Cathode reaction: 

 2 H2O + 2 e− → H2 + 2 OH− Eq 3 

The electrolyzer consists of three parts—the case in which the cathode area and the anode area is 

separated by a diaphragm and filled with the electrolyte. Appendix - Figure 1 shows the schematic 

of an AEC. 

 
Appendix - Figure 1: Schematic of an AEC [83] 
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Proton exchange membrane electrolyzer (PEMEC) 

PEMECs are mostly used in small-scale applications. When compared to AEC, its advantages in-

clude a high cell efficiency, high power density, and flexible operating conditions. However, the ma-

terials used for the system (e.g., platinum), its complexity, and later introduction have led to a higher 

CAPEX than AEC. Another disadvantage of PEMEC is its shorter lifetime when compared to AEC 

[83].  

Further research is focused on material optimization, reducing complexities, and scaling-up the tech-

nology. All these three areas would lead to a reduction of CAPEX [83]. 

A PEMEC uses a proton-conducting membrane as an electrolyte. It also separates the anode and 

cathode areas. As shown in Appendix - Figure 2, the water enters and the oxygen leaves the system 

at the anode side, while the hydrogen leaves the system at the cathode side. Appendix - Figure 2 

also shows that H+-ions are exchanged through the polymer membrane [169].   

 
Appendix - Figure 2: Schematic of a PEMEC [83] 

The used material for the membrane is normally a perfluoro sulfonic acid polymer (e.g., Nafion). 

PEMEC is mostly operated with temperatures slightly above 100°C and a pressure of 1atm. 

The following partial reactions occur: 

Anode reaction: 

 2 H2O → 4 H+ + O2 + 4 e− Eq 4 

 

Cathode reaction: 

 4 H+ + 4 e− → 2 H2 Eq 5 

 

Solid oxide electrolyzer (SOEC) 

The SOEC uses Y2O3 electrolyte, which is stabilized with ZrO2. The water enters the electrolyzer 

and the hydrogen leaves it at the cathode side while the oxide leaves it at the cathode side. An 

SOEC differs from the AEC and PEMEC especially due to its operating conditions. It is a high-tem-

perature electrolyzer and therefore operated at temperatures around 900°C and a pressure of 1–

10 bar. Beside these advantageous conditions it has low material costs, high electrical efficiency and 

is operable in reverse mode as fuel cell [83], [170].  
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Appendix - Figure 3 shows the basic construction of SOEC. The O2—Ions conduct through the elec-

trolyte. 

 
Appendix - Figure 3: Schematic of a SOEC [170, 83] 

The following partial reactions occur: 

 

Anode reaction: 

 O2− →
1

2
 O2 + 2 e− Eq 6 

 

Cathode reaction: 

 H2O + 2 e− → H2 + O2− Eq 7 

 

Summary - Electrolyzer 

Appendix - Table 1 shows an overview of the different parameters of AEC, PEMEC, and SOEC 

systems. 

Appendix - Table 1: Technological characteristics of AEC, PEMEC, and SOEC systems [83] 

 AEC PEMEC SOEC 

Current densitiy (A/cm²) 0.2-0.4 0.6-2.0 0.2-2.0 

Cell voltage (V) 1.8-2.4 1.8-2.2 0.7-1.5 

Voltage efficiency (%HHV) 62-82 67-82 <110 

Cell area (m²) <4 <0.3 <0.01 

Operating temperature (°C) 60-80 50-80 650-1000 

Operating pressure (bar) <30 <200 <25 

Production Rate (m³H2/h) <760 <40 <40 

Stack energy (kWhel/mH2³) 4.2-5.9 4.2-5.5 >3.2 

System energy (kWhel/mH2³) 4.5-6.6 4.2-6.6 >3.7 

Gas purity (%) >99.5 99.99 99.9 
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 AEC PEMEC SOEC 

Lower dynamic range (%) 10-40 0-10 >30 

System response Seconds Milliseconds Seconds 

Cold-start-time (min) <60 <20 <60 

Stack lifetime 60,000-90,000 20,000-60,000 <10,000 

Maturity Mature Commercial Demonstration 

 

Methanation 

A key factor in the project STORE&GO is the methanation process, which contributes toward main-

taining natural gas or SNG in the existing European infrastructure as a clean energy source, but with 

an already advantageous and continuously improving environmental footprint.  

First, the gas input in STORE&GO is not syngas9, the normal source for methanation, but a mixture 

of H2, CO2, and, depending on the source, CO. Hence, the focus will be on information with this 

input. Second, in the project, three processes will be used. Work package 2 (WP2) and WP4 both 

demonstrate a cooled-reactor methanation. A biological methanation will be demonstrated in 

WP3.These three processes are of special interest within the data collection and can be compared 

with a “commercial standard” of fixed bed methanation. 

In this chapter, the most common methanation processes are described based on the available data 

on the current situation. This includes available data on technological parameters and costs. Since 

scale effects and cost reduction developments (learning effects) differ for different parts of the instal-

lations, as far as possible, costs are split up. 

The catalytic or chemical methanation processes are subdivided into the following three different 

technologies [103]: 

Fluidized bed 

Fixed bed 

Three phase reactor 

Structure reactors 

The biological methanation is subdivided into the following:  

In-situ 

Ex-situ 

Chemical methanation 

The methanation process is exothermic and releases a substantial amount of heat, which will in-

crease the gas temperature [103]: 

CO2 (g) + 4 H2 (g) ⇌ CH4 (g) + 2 H2O (g)  Δ Hro = -165.1 kJ/mol 

CO (g) + 3 H2 (g) ⇌ CH4 (g) + 1 H2O (g)  Δ Hro = -206.3 kJ/mol 

                                                
 
9 Syngas, or synthesis gas, is a fuel gas mixture consisting primarily of hydrogen, carbon monoxide, and very 
often some carbon dioxide. 
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The equilibrium of a gas reaction can be influenced by pressure if the number of molecules on both 

sides is different. If the pressure is increased, then the position of the equilibrium would move in the 

direction of the least number of molecules. Since the number of molecules in the product site (me-

thane on the right-hand side of the double arrow) is lower, high pressure helps to shift the reaction 

to methane. Considering that the reaction is exothermic, a higher temperature has the opposite ef-

fect. It can accelerate the reaction and lower the equilibrium concentration of methane. There are 

two other important reactions. The first reaction comprises the water gas shift reaction, balancing 

the amount of several gasses: 

CO (g) + H2O (g) ⇌ CO2 (g) + H2 (g)  Δ Hro = -41.2 kJ/mol 

The second is the Boudouard reaction, which can deactivate the catalyst by covering it with a carbon 

layer: 

2 CO (g) ⇌ C (s) + CO2 (g)  Δ Hro = -172.5 kJ/mol 

Hence, this catalytic process faces several problems—the increasing gas temperature caused by 

the exothermic reaction of the gas and the decline in activity of the catalyst by carbonaceous coke 

deposition. Hence, cooling of the gas is an important issue, which emerges in all the chemical pro-

cesses. Coke deposition can be suppressed to a certain extent by a small excess of hydrogen10. 

Several reliable catalysts have been developed and made commercially available for the methana-

tion reaction. They have such a high activity that further development has no priority. Hence, mass 

and heat transfer limit the reactor performance [171]. 

General commercial process 

Chemical or catalytic methanation is already a commercially available technology used in several 

industrial applications. However, the general commercial process uses syngas and not hydrogen 

and CO2, as in the STORE&GO project. Syngas can also be diluted with other gasses like nitrogen. 

 Catalyst: 

In most cases a nickel-based catalyst is used because of its relative high reactivity, good CH4 

selectivity, and the low cost when compared to more precious metals like Ni, Ru, Rh, and Co. 

However, a nickel-based catalyst requires a clean syngas with respect to halogeneous and 

sulphurous compounds, among others [103].  

 Carrier: 

A metal oxide, such as alumina oxide, is usually the carrier metal because of its high specific 

surface, but other materials are also mentioned. 

 Temperature: 

Low temperature methanation takes place in the range of 200–550 °C and high-temperature 

methanation between 550–750 °C [172]. The carrier metal is usually a metal oxide, such as 

alumina oxide, because of its high specific surface.  

 Efficiency: 

The energetic efficiency of the methanation process is in the range of 70% to 85%, with the 

remaining 15%–30% being emitted as a high-temperature heat (with respect to the energy in 

the outgoing gas stream relative to the energy in the incoming gas stream) [172]. 

                                                
 
10 The presence of ethene and ethyne can also cause carbon formation. Hence, in the gasification processes, 
which produce SNG, those components has to be removed first. 
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Since natural gas also contains higher alkanes, such as ethane, propane, and butane, high concen-

trations of methane are needed to reach the same combustion value. To reach a conversion of 98% 

of the CO2, a temperature of 225°C is needed at 1 bar and 300°C at 20 bar [103]. 

Demo plant Falkenhagen (STORE&GO WP2) 

In Germany, a lot of surplus sustainable energy is available. There is already an existing 2 MWel 

hydrogen production unit, and the hydrogen is injected in the gas grid with a 1.6 km hydrogen pipe-

line. A small 60% of the output will be used for methanation, which would be equivalent to 1.1–1.2 

MWel. The methanation plant in Falkenhagen will be provided with a honeycomb or structured wall 

reactor methanation technology. CO2 would be generated from a biomass related process (biogas 

or bioethanol plant) under the following conditions: <0.1 ppmv H2S and about 9 bar. The output is 

connected to the high-pressure transport gas grid of 55 bar(g). The optimal operating conditions are 

neither isothermal nor adiabatic, and a high-pressure steam might be produced. Thermal heat inte-

gration with other industrial facilities is an option. The involved partners are E.ON Gas Storage 

(EGS), the Karlsruhe Institute of Technology (KIT), ThyssenKrupp Industrial Solutions (TKIS), and 

DVGW (Deutscher Verein des Gas- und Wasserfaches). The target of the methanation plant is to 

convert 210 Nm3/h H2 to 57 Nm3/h SNG at 280-320 °C and 10 bar with an efficiency of 80%. The 

630 kWthoutput plant will produce 2.2 to 2.3 GJSNG/h. 

The isothermal structured wall/honeycomb methanation reactor, mainly developed by KIT and TKIS 

will be erected and commissioned by TKIS, together with all the necessary gas upgrading facilities 

near the electrolyzers in two container modules. This reactor concept uses metallic honeycombs as 

catalyst carriers and an in-situ heat extraction system. After 15 years of research, this concept was 

converted into a demo scale in 2014 (container module). The structure has a low-pressure loss, and 

the metal gives a good heat transfer. For catalytic applications like methanation, the metallic honey-

comb structure is impregnated with a catalytic washcoat. In the project, the reactor concept can go 

up to 20 bar and 350 °C. For the methanation-specific catalyst types, based on innovative Ni and Ru 

based catalysts, it must be adapted to be suitable for the developed coating technology. 

Demo plant Troia (STORE&GO WP4) 

A 200 kWel PtCH4 plant will be built in Troia in Italy at the existing INGRID PtG demonstration site. 

INGRID is an ongoing FP7 European R&D project (large-scale demonstration project). The location 

is designed for a 1.2 MWel alkaline electrolyzer, producing a maximum of 240 m3/h H2. The electro-

lyzer will use intermittent electricity from PV and wind farms in the region Puglia through an electric 

grid, which will provide a modular load from 0 to 1.2 MW. The CO2 is generated through an adsorptive 

CO2 enrichment from the atmosphere; this process is facilitated by Climeworks (CWKS). The target 

is 16 kg CO2/h. The industrial partners for this plant will be ATMOSTAT Alcen (ATM), Engineering 

(ENG), Hystech (HST), IREN Energia SPA (IREN), studio BFP (BFP), Municipality de Troia, Politec-

nico di Torino (POLITO), and CEA (Commissariat à l'énergie atomique et aux énergies alternatives). 

The excess heat of the new PtG unit will be used in the CO2 capture process for releasing captured 

CO2 at 95 °C. The SNG will be liquefied and distributed to regional customers with a tank-truck. The 

liquefaction step will also help to clean the methane from the not reacted hydrogen.  

The modular milli-structure reactor based catalytic methanation concept is developed and commis-

sioned by ATMOSTAT Alcen (ATM) and CEA. Heat carrier oil (Dowterm A) will be used for the heat 

recovery (oil temperature 300 °C). The Heat EXchanger-Reactor (HEX reactor) has longitudinal di-

rection channels for the reaction and the transverse direction channels for cooling; refer to Appendix 

- Figure 4. This allows a higher mass and heat exchanges. The catalyst powder of nearly 200–300 

μm is inserted in reactive channels. The gas goes in plug flow through the reactor and has a high 

conversion rate. The reactor is tested at pressures up to 50 bar and space velocities of 1000/h to 
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10000/h has been demonstrated. The plant will have parallel reactors each with an inlet flow of 8-10 

Nm3/h. The startup time would be within 15 minutes, and the load may vary from 20 to 100%. 

 

Appendix - Figure 4: Methanation heat exchanger reactor of 0,8 Nm3/h of CH4 (Picture from Lacre 
http://www.hex-reactor-lacre.com/en/technologies/) 

 

Biological methanation 

In a conventional process, biogas is produced with about 60% of methane and about 35% of carbon 

dioxide. This existing carbon dioxide can also be methanized by using a surplus of hydrogen. There 

are two ways for implementing methanation. They are shown in Appendix - Figure 5. Besides the 

ex-situ pathway whereby methanation is carried out with thermophilic archaea with hydrogen and 

carbon dioxide (lower one), there is a second method that is the same as the last stage in the diges-

tion phase of biogas production (upper one). This is referred to as in-situ methanation in the digester. 

 

Appendix - Figure 5: Two ways for biological methanation 

 

In-situ methanation 

Because for in situ methanation the methane formation rate depend on the CO2 production rate only 

low methane formation rates (MFRs) of < 0.1/h are possible. The investments costs are low because 

an existing digester can be used. The circumstances in the digester are not optimal for methanation. 

Therefore, it is very difficult to facilitate a total conversion of the CO2. According to MicorbEnergy 

Gmbh (Germany), it is possible to increase the methane concentration in biogas from 52% to 75% 

with in-situ methanation. A laboratorial scale experiment with a 3.5 L continuous stirred-tank reactor 

(CSTR), in 2011, in a manure digester facilitates the conversion of 80% of hydrogen to methane and 

a reduction in the CO2 concentration from 38 % to 15 % (Gang, 2012). The gas output also contained 
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20% H2. The experiment was done under ambient pressure and 55 °C. The improvement options 

could involve mixing (stirring) to improve the gas liquid mass transfer. 

Conclusions: 

 Low cost because existing digester can be used. 

 CO2 removal would still be needed for injection into the gas grid. 

 H2 removal would still be needed for high injection rates into the gas grid. However, when 

compared to pure hydrogen, five times more gas can be injected. 

 Capacity limited to digester capacity. 

 Location must be the digester location (no free choice for optimal location in electricity and gas 

infrastructure). 

Ex-situ methanation 

In the ex-situ situation, optimal reaction conditions can be chosen. Two publications mentioned that 

the methane formation rates (MFRs) of 21.3 to 28.7 per hour are measured with a reactant gas flow 

rate per reactor volume (GSVH) of 120 and 300 per hour in a continuous stirred-tank reactor (CSTR). 

However, with 60% and 13.4 vol.-%, the methane concentration is too low for injection into the gas 

grid. When the GSVH was lowered with a factor 4, the methane concentration increased to nearly 

75% (but the MFR also decreased with a factor 4). In a trickle bed reactor and a GSVH of 0.3 per 

hour, a methane concentration of 98% was reached. The methanation was implemented by using 

the Methanothermobacter spp11. In all the reactor designs, the supply of hydrogen to the microor-

ganisms is a limiting factor. Hence, this is the main improvement option. Additionally, it is mentioned 

the reactor design (e.g., the use of membrane reactors) and research in microorganisms 

Conclusions: 

 A methanation reactor is needed. Hydrogen gas transportation to the microorganism is con-

sidered a limiting factor. High methane concentration can only be reached with very (too) low 

gas loads. 

 CO2 removal is still needed for injection into the gas grid. 

 H2 removal is still needed for high injection rates into the gas grid. 

 Capacity is limited to digester capacity, if this is the CO2 source.  

 Dependence on the CO2 source 

 More possibilities for an optimal location in electricity and gas infrastructure. 

Demo plant Solothurn (STORE&GO WP3) – ex situ 

The Swiss demonstration site (WP3) at Solothurn will witness a 700 kWel PtG plant. In April 2015, a 

350 KWel PEM electrolyzer (and hydrogen storage) was installed for making hydrogen for the (5 bar) 

gas; today, the maximum hydrogen content is 2%. The limiting factor for the hydrogen injection is 

the gas demand in the summer. The target is to convert PV electricity in the summer into methane, 

which can be stored in the gas infrastructure, to be used as a fuel in the winter. Since electricity from 

the grid will be expensive most of the time, for this installation electricity from a CHP (Combined Heat 

and Power) unit, the same location will be used. The CO2 is generated from a nearby wastewater 

treatment plant. The plant will be connected to the local electricity and gas distribution grid and to a 

                                                
 
11 Methanothermobacter marburgensis is a thermophilic and obligatory autotrophic archaeon. Thermophilic 
means that the microbe survives at a higher temperature of 40+oC when compared to other microbes. Auto-
tropic means that it is used as an inorganic substance (or sunlight) to convert CO2 into glucose. It is an ar-
chaeon because it has no cell nucleus and it is not a bacteria; the single cell microbes are divided in Bacteria, 
Archaea, and Eukaryota. 
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district heating system. Regio Energie Solothurn (RES), the local utility, will be the operator. The 

plant is commissioned by Electrochaea (ELEC). The other research partners are the Hochschule 

Rapperswil (HSR), EMPA (Eidgenoessische Materialpruefungs- und Forschungsanstalt), EPFL 

(Ecole Polytechnique Federale de Lausanne), and SVGW (Schweizerische Verein des Gas- und 

Wasserfaches). RES will double its electrolysis power and install a 120 m3/h hydrogen methanation 

(about 330 kWthoutput).  

The biological methanation is commissioned by Electrochaea (ELEC). The target is to reach a me-

thane formation rates (MFRs) of 8.3 L/L reactor/h, but with a gas conversion rate of 98%. A specific 

energy consumption in the range of 7 kW/m3 reactor is aimed while reducing the specific costs by 

20%, when compared to the state-of-the art technology. 

CO2-separation 

Investment costs for CO2 sequestration are not easy to define in general. It is reasonable to set a 

reference for specific costs, according to the used CO2 source. Affordable sequestration rates 

strongly depend on concentration of carbon dioxide in the, usually gaseous, source stream and the 

underlying emitting process. As the CO2 sources and the reference values for assessing investment 

costs differ a lot, it seems more practical—at least for the usage of carbon dioxide in the methanation 

process— to value the needed CO2 as an operating supply, and therefore represent its costs as per 

ton CO2 depending on its source and sequestration technology, respectively. 

Technology 

In this section, the three most important CO2 capturing technologies within the project STORE&GO 

will be discussed—CO2 from biogas or bioethanol plants, CO2 from wastewater treatment plant, and 

direct air capture. 

CO2 from biogas or bioethanol plant 

Biomethane plants—biogas plants with gas treatment and feeding into the gas grid—are a good 

option for using unused CO2 as a biogenic gas source. The produced CO2 mostly shows a high 

concentration (up to 99 vol.-%); additionally, since it has been captured from the atmosphere during 

the formation of the biomass, it is by definition climate neutral [111]. 

For the extraction from CO2 from bioethanol production, the same conditions as explained above 

can be applied. Based on the assumption that the gas stream of the fermentation process only con-

tains pure CO2, the only necessary processing would be the dehydration and compression [113].  

CO2 from wastewater treatment plant 

Since the sewage gas, which is released during the treatment of water, contains 50-60% methane 

and 40-50% CO2 plus small amounts of attendant materials, a high amount of CO2 is produced. Due 

to the gas composition, which is similar to the described biogas from biogas plants, the sewage gas 

can be directly methanized and the same costs can be used [173]. 

Direct air capture 

Another way of producing synthetic natural gas (SNG) from a CO2 neutral source is by using CO2 

captured from the atmospheric air. If a CO2 capture process follows the combustion of the produced 

SNG, it can also facilitate atmospheric CO2 reduction. However, since air contains only a small 

amount of CO2 of approximately 400 ppm, this technology is more complex. 
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There are different processes for CO2 air capture: absorption in solvents, adsorption on solids con-

densation in a cryogenic distillation process, and the separation of air with membranes. Due to the 

small amount of CO2 in the atmosphere and the needed water/CO2 separation in the adsorption, the 

cryogenic and membrane process is considered energy intensive and therefore not suitable for PtG 

plants. The absorption in solvents is considered as the only option for PtG plants [111], [174].  


