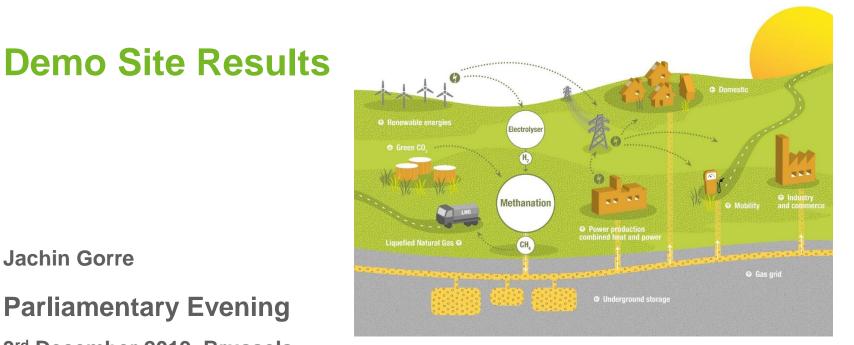
STORE&G**O**

Power-to-Gas: a key enabler for an innovative **CO₂-neutral energy transition**


Jachin Gorre

Parliamentary Evening

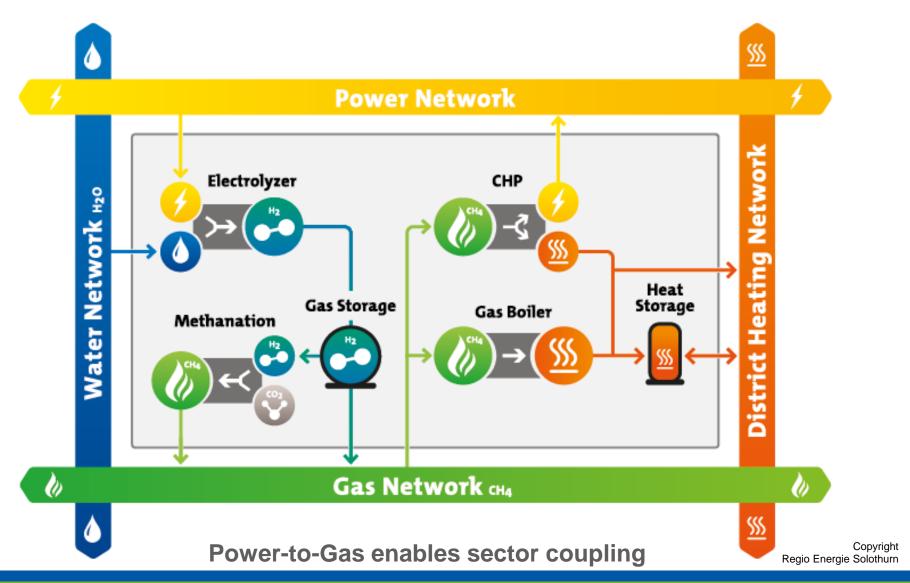
3rd December 2019, Brussels

Co-funded by the European Union under Grant Agreement no. 691797

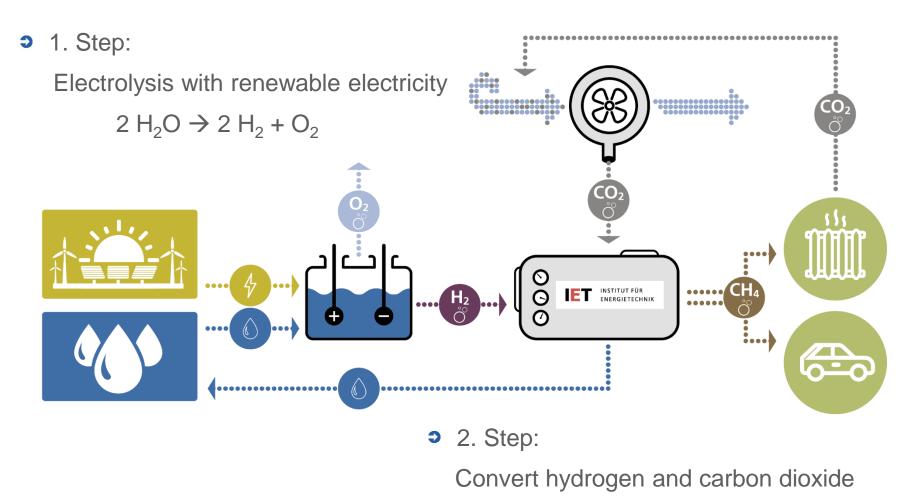
Supported by

Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Conferedaziun svizra

Under contract number 15.0333


www.storeandgo.info

What is Power-to-Gas?

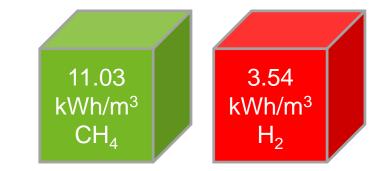


What is Power-to-Gas?

Details of Power-to-Gas

 $4 H_2 + CO_2 \rightarrow CH_4 + 2 H_2O$

Reference: www.iet.hsr.ch


Why do we need Power-to-Gas?

- Unlocks potential of renewable energies in Europe
- Supports balancing the electricity grid
- Multifunctional use of synthetic natural gas
 - backup gas fired power generation
 - clean fuel for ships and cars
 - fire heating installations
 - chemical energy carrier for many industrial sectors
- Decarbonisation of sectors which depend on molecules

Power-to-Gas makes seasonal energy storage feasible

Why is Power-to-Methane necessary?

- Methane has a higher energy density
 - Ideal for storage and transport capacity
- Private end user are familiar with methane

- Infrastructure in Europe available for long term and large scale storage
- Synthetic methane allows continuing the use of existing infrastructure
- Modernisation of power plants and appliances can be occurred systemoptimized

Most industrial processes are based on (methane) molecules

Demosites have proved the operational reliability of PtG

Demosites

Falkenhagen

Solothurn

Troia

- Plant size: 1 MW
- Catalytic methanation
- CO₂ from bioethanol
- Wind power
- Gas transport grid

- Biological methanation
- CO₂ from waste water
- Hydro and PV power
- Urban gas distribution grid

- Plant size: 200 kW
- Catalytic methanation
- CO₂ from air
- Wind and PV power
- Liquefaction to "LNG"

www.storeandgo.info

What we have achieved?

- New innovative methanation processes have been brought to high maturity
- Wide application and combination of different technologies could be demonstrated
- Capital costs for industrial scale methanation plants will be decreased by at least 15 %
- National injection standards have been reached
 - Germany: $CH_4 > 96$ Vol.-%, $H_2 < 2$ Vol.-%
 - Switzerland: $CH_4 > 96$ Vol.-%, $H_2 < 2$ Vol.-% in the grid
- Liquefaction was successfully tested in Italy as an alternative
 - National standard for injection hard to reach ($H_2 < 0.5$ Vol.-%)

Power-to-Gas is innovative and ready to use!

STORE&G

What about efficiency?

 $\eta_{Power-to-Gas} =$

Energy content of synthetic natural gas + Surplus heat for external use

Energy consumption (Electrolyser, Methanation, Balance of Plant)

- Efficiency of Power-to-Hydrogen between 64 and 75 %
 - With surplus heat for external use up to 90 %
- Efficiency of Hydrogen-to-Methane between 69 and 79 %
 - With surplus heat for external up to 92 %
- Overall energy efficiency of Power-to-Gas higher than 75% with sector coupling

Don't waste energy! > 75% of efficiency for PtG accomplished

What are the gaps?

- Political framework conditions need to be adapted
 - Power-to-Gas is not an energy user
 - Power-to-Gas is an energy transformer
 - Financial incentives necessary for the initial phase
 - The construction and operation of PtG plants in open competition allows the market to grow faster and more efficiently than among monopolists.
- Uniform guidelines for grid injection within Europe
 - Higher hydrogen concentration in the gas network
- Further need of research:
 - Operation and process optimisation for different application
 - Using synergies of high-temperature electrolysis and methanation in continuous operation

Power-to-Gas is a key element of the future energy system

Take home message

- Power-to-Gas is technically feasible and ready for energy transition
- New PtG technologies are on the way to catching up with the state-of-the-art or even better
- Power-to-Gas and synthetic methane are key-elements for the energy transition
- Hydrogen will play a major role, if the gas system will be adapted

When will the political and legal framework be ready for Power-to-Gas?

Thank you for your attention!