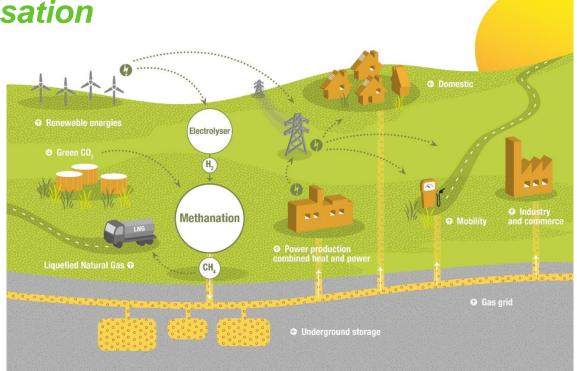
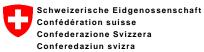
STORE&GO

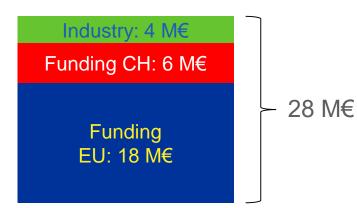
Innovative large-scale energy STOragE technologies AND Power-to-Gas concepts after Optimisation


Project Overview

Dimos Trimis


DVGW Research Center, Engler-Bunte-Institute of Karlsruhe Institute of Technology (KIT) Parliamentary Evening 3rd December 2019, Brussels

Co-funded by the European Union under Grant Agreement no. 691797


Supported by

Under contract number 15.0333

STORE&GO Key Facts

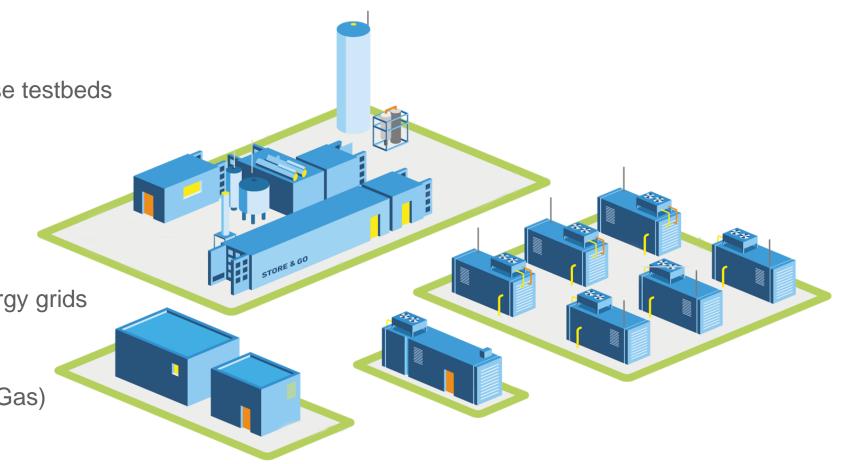
- 27 partners from6 European countries
- **•** Runtime: 03/2016 02/2020
- Erection and operation of 3 PtG demo plants
- Intensive cross-cutting activities

Focus on PtG plants with methanation;

Selection of 3 sites in Europe with existing electrolyser capacity

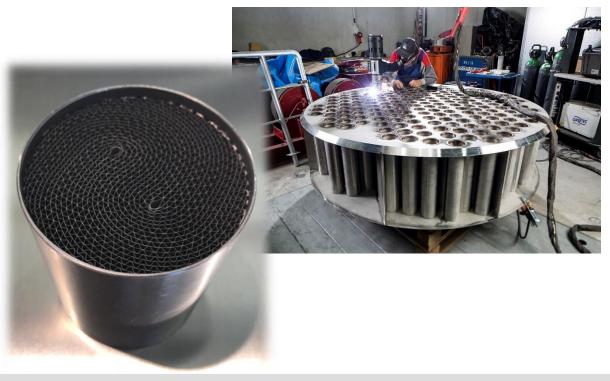
Overview of Activities

- Developing, erecting, operating and analysing 3 demo sites
 - Environmental impacts
 - Economic analysis
 - Optimized Operation schemes for gas grids
- Reducing barriers
 - Discovering legal and regulatory obstacles
 - Outlook on cost and technology development
 - Social acceptance


- Impact of PtG on the energy system
 - Benefits for operating distribution networks
 - Cost savings in transmission networks
 - Energy system simulations

- Market uptake
 - Analysis of future demand of 'green gases'
 - Macro-economic costs and benefits of the PtG
 - A European PtG roadmap

Demo Sites at a Glance


- 3 demo sites offer highly diverse testbeds
 - Methanation technology
 - Network type
 - CO₂ source
 - RE source
- Fully integrated in existing energy grids
- 2 sites: injection into gas grid,
 1 site: liquefaction to "LNG",
 or LRG (Liquefied Renewable Gas)

Demo Site Falkenhagen, Germany

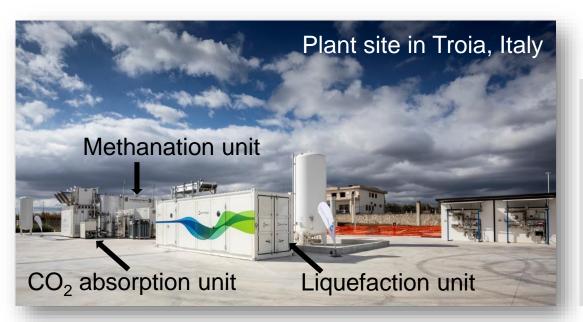
- Plant size: 1 MW
- Catalytic methanation
- CO₂ from bioethanol
- SNG injection in transportation grid
- thermal integration with veneer mill

- Latest operational experiences
- Total operation time: 802 hours
- SNG-Injection :
- Gas Quality:

- more than 7.500 m³ of SNG
 - >96 % CH₄, <2% H₂, <2% CO₂

Demo Site Solothurn, Switzerland

- Plant size: 700 kW
- Biological methanation
- CO₂ from waste water
- Urban gas distribution grid



In this biological methanation

- Total operation time: 860 hours
- SNG-Injection : more than 9.600 m³ of SNG
- Gas Quality: >96
- >96 % CH₄

Demo Site Troia, Italy

- Plant size: 200 kW
- Catalytic methanation
- CO₂ from air
- Liquefaction to "LNG"

Catalytic methanation "milli"-reactor

Latest Operational Experiences

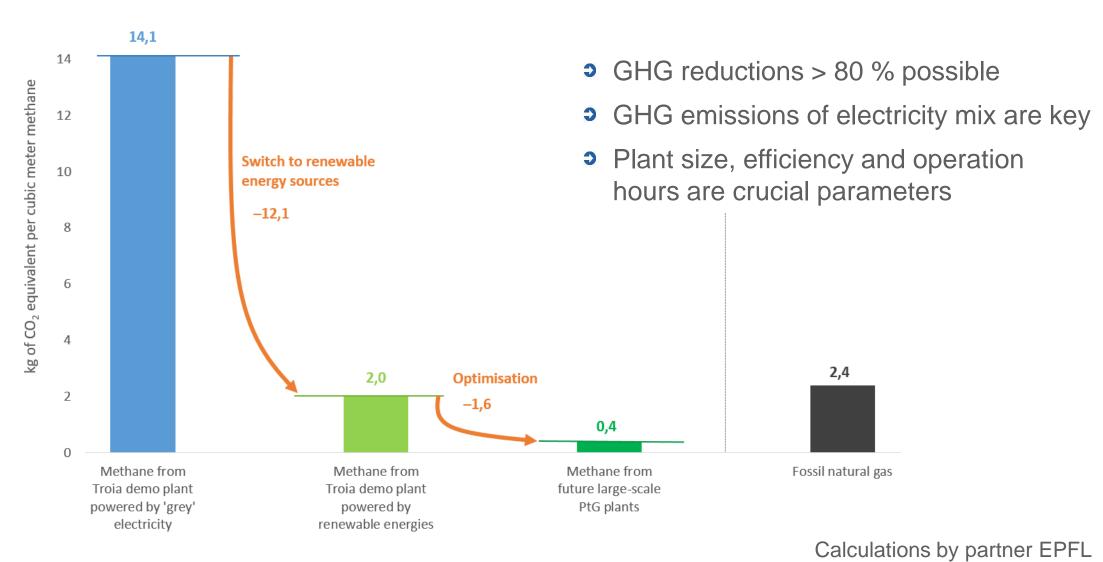
- Process chain to "LNG" validated in April 2019
- Total operation time:
- Production of SNG:
- Gas Quality:

- ~150 hours
- > 600 m³
- >96 % CH4

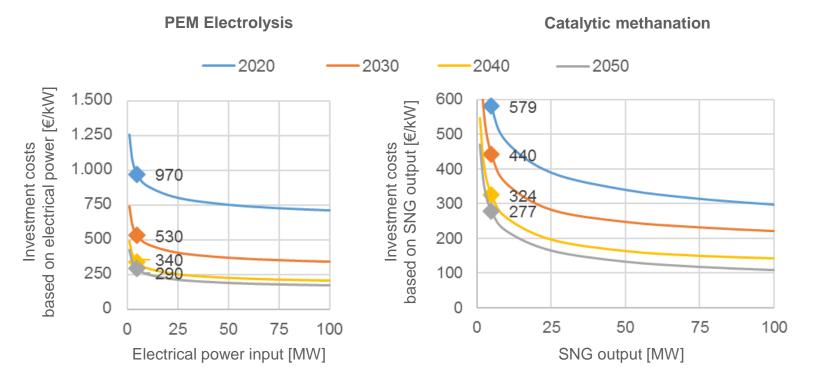
Key Findings from Cross-Cutting Activities

- Operating and analysing 3 demo sites
 - All sites produce high-quality methane
 - Integration into daily grid operation feasible
 - Experiences and expectations are analysed

- Reducing barriers
 - Future need highly dependent on political and economical conditions
 - Political framework is not yet ready for market uptake of power-to-gas
 - Social acceptance of PtG good; can be boosted by stated support from authorities


- Impact of PtG on the energy system

 Most scenarios show relevant need for power-to-gas (CH₄) in the range of 50 200
 GW in Europe; optimistic up to 660 GW, covering 75% of gas demand.
 - PtG (independent of CH₄ or H₂ target) beneficial for operation of electricity distribution and transmission grids
- Market uptake
 - High generation potential for renewable gas (CH₄) within EU, e.g.
 - 500 2500 TWh from biomass fermentation*
 - PtG with CO₂ from fermentation: another 250 - 1200 TWh



*assuming that 1/3 of technical potential is used

Selected Results: CO₂ Footprint of PtG-methane

Selected Results: Expected Cost Decrease

- Cost development related to scaling effects and technological learning
 - Left: electrolysis systems
 - Right: methanation systems

- Assumptions, EU in 2050:
 - 1240 GW electrolysers installed
 - 550 GW methanation units installed

Calculations by partner EIL

Outlook until project end in February 2020

- Gathering of operational hours and experiences at the demo sites
- Finalization of demo site operation assessment
- Conclusion with scientific conference on February 17-18 of 2020 in Karlsruhe

Thank you for your attention!

