Life cycle assessment of Power to Gas technologies for long-term storage and sector coupling

Xun Liao, EPFL

Store&Go Training school

Karlsruhe, 21 February, 2020

Co-Funded by the European Union under Grant Agreement no. 691797 Supported by the State Secretariat for Education, Research and Innovation under contract no. 15.0333

www.storeandgo.info

Agenda

Understand the key factors Strategies for reducing PtG carbon footprint

Demo site evaluation

Introduction

PtG enables energy storage and sector coupling

Renewable hydrogen usage in power, gas, transportation and industry sectors

Source: Hydrogenics.

www.storeandgo.info

Tax Exemption for "Green fuel" requires LCA evaluation

The Mineral Oil Tax Ordinance (Swiss) Biofuels must generate at least **40%** less **greenhouse gas emissions** (from cultivation of raw materials till end use) compared to the **life cycle emissions** of fossil natural gas

www.storeandgo.info

Life Cycle Assessment (LCA)?

www.storeandgo.info

Types of LCA analysis

Attributional

Consequential

Conceptual difference between attributional and consequential LCA (Weidema, 2003)

Key issues related to LCA of PtG

Power to gas: characteristics of three demo sites

Falkenhagen (Germany) 1000kW

Bioethanol plant (300km, -35°C tanker truck) Solothurn (Switzerland) 700kW

Troia (Italy) 200kW

Wastewater plant

(2.5 km pipe)

HYDROG(E)NICS

High temperature

Medium temperature

www.storeandgo.info

Scope of PtG in the store & go project

Source D5.4 (STORE&GO)

Key assumptions

lifetime	15	yr
hours_yr_de	2000	hours per year
hours_yr_ch	2000	hours per year
hours_yr_it	2000	hours per year
AEL_lifetime	80000	hours per life time
PEM_stack_lifetime	80000	hours per life time
PEM_BoP_lifetime	80000	hours per life time
cat lifetime	4000	hours per life time

Climate change impact of the three PtG demo sites

2.00

Key observations

The impact is dominated by energy consumption used during the water electrolysis.

The **heat valorisation** from Falkenhagen if realised could be potentially a large carbon reduction factor.

Local sourcing CO₂ is another key factor

Warning: The three PtG systems should not be directly compared for climate change performance due to variabilities in electrolysis efficiencies, renewable energy sourcing profiles, CO2 sourcing, surplus heat valorisation scenarios, as well as methanation technologies.

Climate change impact of equipment impact

350

Source: Own calculation

www.storeandgo.info

Low-carbon electricity input is the key for "green" gas

Source: Own calculation

www.storeandgo.info

Influence of electricity input

Source D5.4 (STORE&GO)

PtG could be a key enabler for a CO₂ neutral energy system

The conventional SNG reference is calculated based on the current Italian power grid, i.e. the annual national average high-carbon energy sources.

PtG could be a strategic approach to **store** electricity (from renewable sources) and provide **energy security** and **sector decarbonization**.

- High renewable penetration and are key for large scale deployment of PtG technologies, as well as environmentally friendly sourcing of CO₂
- Heat integration/valorization and economy of scale are effective strategies to reduce carbon footprint of PtG systems
- Important to examine nonlinear effects associated with learning curves (technology maturity, scale, cost) and environmental effect for given temporal horizons and geographical scopes.

Color coding: Medium/long term vs near-term

Thanks!

xun.liao@epfl.ch

Supported by the State Secretariat for Education, Research and Innovation under contract no. 15.0333 Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederaziun svizra

Co-Funded by the European Union under Grant Agreement no. 691797

www.storeandgo.info